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ABSTRACT

This paper describes a novel noise robust speech detection
algorithm that can operate reliably in severe car noisy
conditions. High performance has been obtained with the
following techniques: (1) noise suppression based on principal
component analysis for pre-processing, (2) robust endpoint
detection using dynamic parameters [1] and (3) speech
verification using periodicity of voiced signals with harmonic
enhancement. Noise suppression improves the SNR as
compared with nonlinear spectrum subtraction by about 20 dB.
This makes the endpoint detection operate reliably in SNRs
down to –10 dB. In car environments, road bump noises are
problematic for speech detectors causing mis-detection errors.
Speech verification helps to remove these errors. This
technology is being used in Sony car navigation products.

1. INTRODUCTION

Hands-free operation is a very important feature for speech
activated systems. Speech detection provides a way to solve the
problem for isolated word speech recognition. In addition, it has
been shown that endpoint detection improves the isolated word
recognition accuracy [2].

Many speech detection algorithms have been proposed [2]. For
applications in car environments, a good speech detector should
be noise robust, accurate and capable of real-time
implementation. Good performance has been reported for
moderate noise conditions such as SNRs above 5 dB. However,
for severe noise conditions such as SNRs down to –10 dB in
some car environments, no successful detection algorithm has
yet been reported. In car environments, road bump noises are a
frequent noise source. Most proposed speech detection methods
use signal energy as the primary detection parameter. For these
detectors, strong background noise such as road bump noise may
be incorrectly detected as speech.

To obtain reliable speech detection for car applications, we
proposed a speech detection algorithm that consists of three
major parts: noise suppression, robust endpoint detection and
speech verification.  The noise suppression module is used as
pre-processing for robust endpoint detection to suppress
background noise. The noise suppressed signal is then passed to
the robust endpoint detection module in which boundaries of
utterances are detected. Since strong non-speech signals may
also be detected as speech, the speech verification module
performs verification for the signal between the boundaries and
outputs the endpoints to a recognizer.

2. NOISE SUPPRESSION

2.1 Problem

Noise suppression is an important step for speech detection to
operate in severe noise conditions such as SNRs down to –10
dB. Figure 1 shows a speech segment waveform (2a), noisy
waveform (2b) corrupted by car noise at SNR –10 dB, and its
short-time energy (2c). In Figures 2b and 2c, no obvious
evidence of speech can be observed. Detectors designed for
moderate noise conditions will perform poorly in these severe
noisy conditions.

The performance of the speech endpoint detection algorithm
depends on both the SNRs and the smoothness of parameters
used. Low SNRs causes the detection failure rate to increase and
a rough parameter curve corrupted by noise makes accurate
endpoint detection difficult. To improve the performance of the
speech endpoint detection algorithm in a low SNR, the SNR
should be increased, and while the noise element with a large
variance should be suppressed. The proposed method attempts
to solve the above problem for speech detection under severe
noisy conditions.

2.2 Subspace Method

In the proposed endpoint detection algorithm described in
section 3, the primary parameter used to detect endpoints is the
summation of each band output energy (or delta energy) of a
filter-bank. The bands with large energy output dominate the
overall SNR value. For a low SNR, these bands may not have a
high SNR, since noise energy could be high in these bands.  To
have a high overall SNR, the energy from the bands that have a
high SNR should be more heavily weighted. In other words, the
weights should be directly proportional to the SNR of bands.

The Karhunen-Loeve transformation can be used to enhance
this procedure, since feature data are projected onto the
subspace on which the variances of noise data are maximized or
minimized in its principal directions.

Let n denote the non-correlated additive random noise vector, s
be the random speech feature vector and y stand for the random
noisy speech feature vector, all with dimension p. Then y = s +
n. Assume E[n] = 0, where E is the statistical expectation
operator. If n has a nonzero mean, the mean is simply subtracted
from n before analysis. The correlation matrix of noise vector
can be expressed as R = E[nnT].



R has its singular value decomposition expressed as

R = V [diag λ] VT (1)

where V is a p-by-p orthogonal matrix in the sense that its
column vectors (i.e., the eigenvectors of R ) satisfy the
conditions of orthonormality  and λ is a p-by-1 vector defined by
the eigenvalues of R, λ = [λ0, λ1, ..., λp-1]T.

Since each eigenvalue of R is equal to the variance of projection
data in its corresponding principal direction, with zero means,
vector λ also defines the average power vector of projection
data.

Let q denote the average power vector of the random speech
projection vector by V

q = [β0, β1, ..., βp-1]T     (2)

Then SNR ri for element (or band) i is given as

                       ri = βι / λι , i=0, 1, ..., p-1. (3)

A simple way to have a weight vector w whose element values
are directly proportional to the SNR is to have

 wi = (ri)α , i=0,1,…p-1,    (4)

where α is a constant. Since vector q is not available in noisy
environments, to calculate vector w, we may use vector q’  which
is estimated from the noisy speech vector y and noise vector n.
For simplicity, currently we set q to the unit vector and α to 1.
With this setting, the weight vector can be expressed as

wi = (1/ λι) , i=0,1,…p-1,      (5)

which can be explained that high noise bands are lightly
weighted and low noise bands are heavily weighed.

2.3 Implementation

The implementation of the subspace method has three steps. 1)
Calculate eigenvectors V and eigenvalue vector λ of the
correlation matrix of  background noise data and set wI using
equation (5). 2) Project the noisy speech vector y onto the
subspace spanned by V with ys = VTy, where ys represents the
projection vector of y.  3) Weigh the projection vector ys by w to
form output vector z with  zi = y’iwi, i=0,1,…p-1. Figure 2d
shows the noise suppressed short-time energy of noisy speech
shown in Figure 2b. Clear boundaries of the utterance are
observed.

3. ROBUST ENDPOINT DETECTION [1]

The endpoint detection uses dynamic features and reliable
adaptive thresholds contingent upon local Signal-to-Noise
Ratios (SNR). The algorithm employs a two-step search scheme
[2]: reliable island search and boundary refinement.

3.1 Parameters

Delta short-term energy (hereafter called the dynamic time-
frequency (DTF) parameter) is used as parameters to detect the
endpoints. The DTF parameters are calculated with the equation

Figure 1. An example to show noise suppression performance

given  below,
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where yi(m) is the m-th channel energy of  output feature vector
from the noise suppression section at time instant i (in frame).
DTF'’(i) is then smoothed by a 5-point median filter to obtain
DTF(i). It is observed that the DTF is more robust against noise
than the signal energy for car noise.

3.2 Adaptive Threshold Determination

There are four thresholds, one to detect the beginning point of
reliable islands (Tsr), another to detect the ending point of
reliable islands (Ter), one more to refine the beginning point (Ts)
and the final one to refine the end point (Te). Thresholds should
be adaptive both to the background noise and to the signal-
noise-ratio (SNR).

For real-time implementation, only the local SNR is available.
Let SNRle and SNRle be the SNR for the beginning and ending
points respectively. With  background noise Nbg, Ts and Te can
be determined with the equations given below,

Ts Nbg SNRls cs= +( / )1
2

              (7a)

Te Nbg SNRle ce= +( / )1
2

              (7b)

where cs is a constant for the beginning point determination and
ce is a constant for the ending point determination. Tsr and Ter

can be determined in a similar way. Nbg, SNRs and the
thresholds are updated as the search progresses.

3.3 The Algorithm

The algorithm consists of two steps: reliable island detection
and boundary refinement. The beginning point of the reliable
island is detected when DTF(i) is first over Tsr for at least 5
frames and the ending point of the reliable island is detected
when DTF(i) is below Ter for at least 60 frames (or 600 ms) or
Te for at least 40 frames (400 ms). After the beginning point of
the reliable island is detected, a backward-searching (or
refinement) procedure is used to find the beginning point of the
utterance. The searching range is limited to 35 frames (or 350
ms) from the beginning point of the reliable island. The
beginning point is found when DTF(i) is below Ts for at least 7
frames. A similar procedure is applied to find the ending point
of the utterance.

a .  C l e a n  S p e e c h

b .  n o i s y  S p e e c h  w i t h  S N R  - 1 0  d B

c .  s h o r t - t i m e  e n e r g y  f o r  n o i s y  s pe e c h

d .  N o i s e  s u p p r e s s e d  s h o r t - t i m e  e n e r g y



4. SPEECH VERIFICATION

The speech verification method uses the harmonics of the
fundamental frequency F0 of voiced signals to determine
whether the input signal corresponds to an utterance.  There are
three major steps in this method. 1) The first step carries out the
harmonic enhancement by summing adjacent frames of short-
time spectra.  2) Pitch detection is then implemented by
spectrum comb analysis. 3)The final step calculates the
confidence measure of voice quality based on the magnitude and
the peak sharpness.

4.1 Pre-processing

Pre-processing performs down-sampling from 16 kHz sampling
rate to 4 kHz sampling rate with a 0-2000 Hz bandwidth.  A
1024 point FFT is applied to each 40 ms Hanning windowed
data,  shifted at the rate of one frame every 10 ms.

4.2 Harmonic Enhancement

Noise suppression is implemented by summing N adjacent
frames of spectra. Specifically, assume that corrupted noise is
additive and let Yi(k) denote the noisy spectrum at frame i.
Then

              Yi k Si k Ni k( ) ( ) ( )= + ,

where Si(k) is the speech spectrum at frame i and Ni(k) is the
noise spectrum at frame i. Summation Zi(k) can be expressed as
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where N is the number of frames for summation. Considering
only the fundamental frequency and its harmonics, and knowing
that for voiced signals (particularly vowels), within a short
period, spectra for adjacent frames are similar, the summation of
speech spectra Zsi(k) can be approximated as

Zsi k S k NS k
l

N
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Here βl represents the frequency scale to align the slightly
different fundamental frequencies between the (i-l)- th frame
spectrum and the i-th frame spectrum. Assuming that noise at
each frame is not correlated with the speech and the noise of its
adjacent frames,  the SNR gain from the summation is

                   SNRg N= 10 10log ( ) .                                (10)

βl can be obtained with

βl
a

Si k Si l ak
k

= − −∑arg min( ( ) ( ) )                 (11)

An exhaustive search can be used to find βl within a small
range, say [0.95 1.05] with a delta equal to 0.01.

Figure 2 shows an example with N=6. It can clearly be seen that
noise has been successfully suppressed as shown in Figure 3b.

 

a . N o isy  S p eec h  (0  d B )

b . S p eec h  w ith  a l ig ne d  S u m m a t io n  (0  d B )

c . C lea n  S p eec h

Figure 2. Comparison for Noise Suppression used for
speech verification

4.3 Pitch Detection

Spectrum comb analysis [3] is used to detect the pitch from the
noise-suppressed spectrum. Spectrum comb analysis is a
computationally efficient method, classified as one of the second
generation methods [4] which are shown to be especially
resistant to noise. The method can be expressed as a correlation
between a teeth window and a spectrum. For voiced signals, the
frequency at which the maximum peak locates is considered as
the fundamental frequency.

4.4 Confidence Measure

The confidence measure or voiced/voiceless classification is
based on the results from the Pitch Detection section.  One way
[5] to make voiced/voiceless classification is to use the auto-
correlation value at the maximum peak frequency. An
alternative way is to directly use the results from the pitch
detection by measuring the frequency quality of the maximum
peak. It is clear that the sharper the peak, the better the signal in
terms of closeness to the pure sine waveform. Two parameters
are used: 1) Magnitude ratio defined as R= (Mpeak -Mavg)/Mpeak,
where Mpeak denotes the maximum peak magnitude and Mavg is
the average and; 2) Quality factor Q defined as the width
between the half magnitude points from the maximum peak.
The utterance is classified as speech if RQ > 0.05 consecutively
for at least 4 frames.

5. EXPERIMENTS

5.1 Tasks and Criteria

Three tasks were investigated in the experiments. The first task
is to evaluate the SNR improvement from the proposed noise
suppression method over the conventional spectral subtraction
method with full-wave rectification. An English database
containing 13000 tokens, and noise data collected from a car
running on streets and highways are used in this task. The
second task is to evaluate the performance improvement of
speech endpoint detection algorithm by using the proposed noise
suppression method. An English database containing 10-speaker
data, 5 females and 5 males, is used. The same noise described
above is also used in this task. The final task is to evaluate the
proposed speech verification method. Data recorded in a car
driven on streets and highways is used for this task. The data
has 118 isolated words contained in 1 hour and 17 minutes of
noisy car data. The SNR ranges from 0 dB to 30 dB.



For the SNR evaluation, the SNR is defined as
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where s(m) denotes the projection speech  vector, y(m) is the
projection noisy speech vector, both at frame m, w is the weight
vector.

 For the endpoint detection evaluation, experiments were
conducted to evaluate the performance of the speech detection
algorithm with the criterion of average difference between the
detected endpoints and hand-marked endpoints.

For speech verification, the endpoint detection was first carried
out to find word boundaries on the noise-data. Later, for each
utterance found with the endpoint detector, speech verification
was carried out.

5.2 Results and Analysis

Results are given in Table I for task one and in Table II for task
two. In task one, the SNR of original noisy speech was set to -10
dB. Noisy speech was pre-emphasized for high frequency
components with α = 0.97 for the pre-emphasis case. The noisy
speech was analyzed with a 24-band filter-bank. The energy of
each band output forms the feature vectors.

Table I.  SNR improvement for noisy speech of -10 dB SNR

          w/o pre-emphasis  with pre-emphasis

SNR   SNR Improve. SNR SNR

Consona -10.17 18.27 -0.61 9.59

  Vowel    -5.07  13.73    1.24  7.98

  word    -6.04  18.91    3.77  10.0

Table II.  Average Difference Comparison between the
detector with (and without) noise suppression

-10dB
(ms)

-15dB
(ms)

-20dB
(ms)

-30dB
(ms)

B w/ NS  167  157  200  384
B w/oNS 156  206  289  853
E w/ NS  172 222  274  476
E w/oNS  250  289  346  704
M w/NS 3 13 62 253
Mw/oNS 45 241 500 752

B     –   Beginning point;             E      – Ending point
M  -- No. of missing tokens;   w/ NS   – with noise suppression;
w/o NS – without noise suppression

Three broad clusters, consonant, vowel and word are under
evaluation.  From the results, it can be seen that our proposed
method improves the SNR by 10 dB for words, 7.89 dB for
vowels and 9.59 for consonants over the spectral subtraction
method with pre-emphasis, and 18.91 dB for words, 13.73 dB
for vowels and 18.27 dB for consonants without pre-emphasis.

For task two, there are four SNR levels including -10 dB, -15
dB, -20 dB and -30 dB. A total of 860 tokens were used in this
investigation. From these results, it is obvious that speech
detection  with noise suppression performs much better in terms
of number of missing tokens and accuracy.

Results from task 3 are given in Table III and Table VI. The
detector correctly found all 118 speech tokens, but incorrectly
found 16 non-speech tokens as shown in Table 1.

Table III.  Performance of speech verification (SP)
algorithm in correction no. of tokens

Speech
Tokens

Mechanical
Noise tokens

Road bump
noise tokens

Human
noise tokens

W/o SP 118 5 9 2

W/  SP 116 1 2 1

Table III shows that the number of noise tokens (mechanical,
road bump and human) mis-detected as speech tokens by the
endpoint detector is 16. This number is reduced to 4 by using
speech verification, however, 2 actual speech tokens are still
mistakenly re-classified as noise. Subsequently, the error rate is
reduced from 11.94% to 4.48%.

6. CONCLUSION

A noise robust speech detection algorithm has been proposed
which uses three technologies: noise suppression, robust
endpoint detection and  speech verification. The method was
developed for the applications which have very low SNRs.
Experiments shows that SNRs are greatly improved with the
proposed noise suppression, which makes the endpoint detection
operate reliably in SNRs down to –10 dB for car noises. For
speech verification, experiments show that the method is robust
to car noise. From the results, it can be concluded that the
proposed method has good results for speech-activated hands-
free systems such as cellular telephones or car navigation
systems, particularly in the very  low SNR conditions.
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