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ABSTRACT

This paper presents a new power-line disturbance detection
algorithm. The utilized recursive least square (RLS) predic-
tion error �lter extracts the power-line disturbance signal
from recorded data, and the modi�ed stop-and-go cell aver-
age constant false alarm rate (CA CFAR) detector makes a
decision based on the squared output of the previous stage.
The detection performance of the proposed algorithm is de-
termined by simulations, and actual high voltage transmis-
sion line data is utilized to demonstrate the performance of
the proposed algorithm.

1. INTRODUCTION

Good electric power quality has become an important issue
over the past several years at both the distribution and
transmission level [1]. Voltage sagging is the one of the most
important disturbances in both types of systems, and is one
of the principal disturbances of interest at the transmission
level.

Two of the most important features of voltage sag to
be identi�ed include accurate determination of the time at
which the voltage sag begins and ends. The current state
of art in analyzing sagging of power-line voltages is the root
mean square (RMS) method, and the starting time and end-
ing time of sagging is measured by this method. However,
this may not give precise time information regarding the
beginning and ending of sagging events, since it has up to
one cycle error per sagging event [2]. This is due to the fact
that the RMS value is calculated over the period of one cy-
cle. In addition, too much disturbance data are collected on
a modern-day high voltage transmission system to be ana-
lyzed by humans. Thus there is a need to \automatically"
detect voltage sag events and to accurately determine their
beginning and ending times.

In this paper we present a new voltage sag detection
algorithm to detect sagging automatically, and to determine
its starting and ending time more exactly. The proposed
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algorithm consists of an adaptive prediction error �lter and
a stop-and-go CA CFAR detector which is a newly modi�ed
algorithm of the CA CFAR detector.

This paper consists of three sections. In Sec. 2, we
present a power-line disturbance signal model, the adap-
tive prediction error �lter, and the proposed stop-and-go
CA CFAR detector. Sec. 3 contains the experiments and
results using simulation and actual high voltage (138 kV)
transmission line data. Finally, Sec. 4 concludes the paper.

2. ADAPTIVE POWER DISTURBANCE DETECTION
ALGORITHM

The adaptive power-line disturbance detection scheme is
shown in Fig. 1, and is composed of the power-line distur-
bance signal model, an adaptive prediction error �lter, and
a new proposed stop-and-go CA CFAR detector.

2.1. Power-line Signal Model

Most steady-state power-line signals consist of a fundamen-
tal frequency, e.g., 50 Hz or 60 Hz, several harmonics with
relatively small amplitudes, and noise. To this steady state,
transient disturbance events are sporadically added. In this
paper we are concentrated with voltage sag events. In this
case the signal has four factors : the fundamental sine wave
of the power-line signal, harmonics, noise which is assumed
to be zero-mean Gaussian noise, and the voltage sag distur-
bance signal. Except for the power line fundamental and
its harmonics, all these factors are assumed orthogonal to
each other in that every factor occurs independently and
their cross-correlations are zero. Therefore, we can build
up the discrete power-line disturbance signal with sampling
rate 2fN as follows.

x(n) = asin(!0n+ �)+

lX
k=2

aksin(k!0n+ �k)+ s(n)+ g(n)

(1)
where ! = 2�f0, (f0 = 50 Hz or 60 Hz), and �; �k are
phases in [��; �), and lf0 < fN , and a >> ak for all in-
tegers k 2 [2; l], and s(n) = disturbance signal if it occurs,
and g(n) = additive Gaussian noise with zero mean and �2

variance. This model is the basis of the new detection algo-
rithm, and agrees well with the real system. Unfortunately,
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Figure 1: Power line sag disturbance signal modeling and detector block diagram

however, the variances of the noise and disturbance signal
are unknown.

2.2. Adaptive Prediction Error Filter

To detect the power-line disturbance s(n) from Eq. (1), if
the basic signal is only one sine wave at either 50 or 60Hz,
a band rejection �lter can be applied ; however, due to
the presence of harmonics which vary with time and load
conditions, an adaptive �lter is required to extract only the
disturbance signal.

In this paper an adaptive prediction error �lter is uti-
lized because of its orthogonality characteristics between in-
put and output values. Therefore the correlated signal, e.g.,
fundamental sine wave and its harmonics, in the power-line
signal can be eliminated.

Among several possible adaptive prediction error �lters,
this paper utilizes the recursive least-squares (RLS) �lter
[3], which is simple and robust.

Since the !o frequency signal and its harmonic signals
are assumed orthogonal to s(n) and g(n), the output e(n)
of the prediction error �lter can be approximated as

e(n) � s(n) + g(n) (2)

2.3. Proposed Stop-and-Go CA CFAR Detector

The detection of the power-line sag disturbance signal s(n)
problem can be changed into a signal detection problem
in Gaussian random noise through an adaptive prediction
error �lter. Thus, the main concern of the disturbance de-
tector is to detect the disturbance signal s(n) from Eq. (2).
To analyze this problem completely we need true a priori
probability density function (pdf) of s(n) and g(n). How-
ever, only the distribution of noise g(n) is known (actually
assumed) as zero mean Gaussian ; however, its variance is
unknown. Furthermore, the mean and variance of the dis-
turbance signal s(n) are unknown as well. When a restric-
tion which maximizes detection probability for a constant
false alarm rate is used, the cell averaging (CA) constant
false alarm rate (CFAR) detector can be utilized in that it
is an optimal detector if the input has an exponential prob-
ability density function (pdf) [4]. For this reason, square
law processing is executed at the output of the prediction
error �lter as indicated in Fig. 1. Thus, for the noise-only
case, the output of prediction error �lter, e(n), is changed
simply to q(n) = je(n)j2, and the output distribution of

this processing has changed from Gaussian to exponential
distribution [5].

In the CA CFAR algorithm, in order to detect the signal
in noise, every test cell is compared to the threshold (THR)
which is obtained from the multiplication of the estimated
local noise mean and the constant T derived from a false
alarm rate.

The main concern of the CA CFAR detector is to esti-
mate the true noise mean. Thus, in this paper we propose
a new modi�ed version of the CA CFAR detector based
on the following two changes : �rst, removal of left-side
cells used in the calculation of the noise mean, and second,
\stop-and-go" processing when the data are saved in the
right cells q1; :::; qN shown in Fig. 2.

Since the RLS prediction error �lter is a �nite impulse
response (FIR) �lter of length M, and even though only one
sample of the power-line disturbance signal may exist, the
output of this �lter e(n) will be of length M and of ampli-
tude greater than the background noise. For this reason,
when a test cell q(0) at time 0 is greater than a threshold,
the following M data are expected to have \large" values,
thus \stopping" movement to the right, i.e., stopping move-
ment to the N averaging cells q1; :::; qN , in Fig. 2. In other
words, these samples are not regarded as background noise.
In addition, the sag disturbance in power-line signals occurs
within less than one cycle of the fundamental frequency. In
this paper, the blocking data length L in Fig. 2 is set to
the same length M of the prediction error �lter. On the
other hand, if a sample value at time 0 is not larger than
the threshold, the test cells in this case \go" to the averag-
ing cells. This stop-and-go CA CFAR detector is shown in
Fig. 2.

Through the square law processing, s(n) and g(n) are
changed into the squared values, e.g., ŝ = js(n)j2 and ĝ =
jg(n)j2. Let the q(n), ŝ(n) and ĝ(n) be denoted by the
random variables (RV) q, ŝ, and ĝ to simplify the notation.
Then, the following hypothesis can be de�ned as

H0 : q = ĝ (3)

H1 : q = ŝ+ ĝ (4)

where E(g) = �, and the RV q for H0 and H1 have ex-
ponential distribution and their apriori pdfs [6] which are
de�ned by

p(qjH0) =
1

�
e
�q=� (5)
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Figure 2: Stop-and-go CA CFAR detector block diagram

p(qjH1) =
1

(1 + SNR)�
e
�q=(1+SNR)� (6)

respectively, and where SNR denotes signal to noise ratio.
The real CFAR detector uses the estimated mean since

� is unknown, therefore the probability of the false alarm
is de�ned as

PFA =

Z
1

0

P (q > T �M1jH0)pM1(q)dq (7)

and the probability of the detection is given by

PD =

Z
1

0

P (q > T �M1jH1)pM1(q)dq (8)

where pM1(q) is the pdf of the noise mean RV M1. If the
true mean value M1 is estimated, pM1(q) becomes �(q��)
for the no disturbance case and �(q � (1 + SNR)�) for the
disturbance case. Therefore, in the ideal case PFA and PD
in Eq. (7) and (8) are de�ned as

PFA = e�T (9)

PD = e
�T=(1+SNR) (10)

3. EXPERIMENT AND RESULT

In this paper we utilize voltage sag data actually observed
on a 60 Hz, 138 kV high voltage transmission line. The
sampling frequency is 3,840 Hz.

Before testing the actual data, we investigate the perfor-
mance of the RLS prediction error �lter and a stop-and-go
CA CFAR detector.

3.1. Performance Check

For the RLS prediction error �lter, the performance can
be measured by the convergence speed and the extraction
ability of the non-correlated signals. The initial value of the
weighting matrix W of the RLS �lter is set equal to zero,
and selected number , M, of taps is 16. With these param-
eters the convergence level of the RLS �lter was reached
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Figure 3: The performance of detection probability PD vs.
SNR(dB) with ideal, and theoretical constant T, and sim-
ulated constant T cases.

in 10 iterations. In this simulation, the 16-tap weighting
vector length turns out to be a good choice for the RLS �l-
ter. This is because when the power-line voltage sag takes
place the voltage drops in less than a cycle, which consists
of 64 samples in the �eld test data presented in the next
section. Therefore, the start of the sag \steady state" can
be detected by the �lter. Similarly, it can detect the end of
the sag, e.g., the recovering state of the fault.

Another main concern of this adaptive prediction error
�lter is to extract the disturbance signal from the power-line
disturbance data. For this simulation we generated a 10000
sample sinusoidal signal at 60 Hz with a 3840 Hz sampling
rate, with 3rd and 5th harmonics with 1/10 and 1/50 am-
plitudes, respectively, and zero-mean Gaussian noise with
SNR 80 dB. One hundred independent experiments were
conducted. By this simulation, the output of the RLS pre-
diction error �lter consisted of only noise and its distribu-
tion is well �tted by a Gaussian.

The proposed stop-and-go CA CFAR detector perfor-
mance is measured by the detection probability related to
the SNR. If the noise mean has a � function, the constant
T can be calculated from Eq. (9) for a given false alarm
rate, and its performance can be derived from Eq. (10).
However, if the background noise mean distribution does
not correspond to the ideal case, e.g., not a � function, the
mean should be calculated from local data with length N ,
and its theoretical performance can be calculated from Eqs.
(7) and (8). In this non-ideal case, the theoretical constant
T related to the false alarm is given by [4, 6]

T = N(P
�1=N
FA � 1) (11)

where N is the number of cells which are used for the calcu-
lation of the background noise mean,M1 in Fig 2. However,
practically speaking, the false alarm rate with this theoreti-
cal constant T is not the same as we set. Therefore, we need
to �nd the new constant T by the simulation. To obtain this
constant T, 10000 zero-mean Gaussian distributed samples
followed by the square law processing were executed 100
times independently.

In this paper the length of the averaged cells, N , is set
equal to 64 to obtain of one cycle of the power-line signal



local noise mean value. This length is larger than most
CFAR detectors used in radar. To obtain a PFA = 10�6

with 64 averaging cells, the theoretical value of constant T
by Eq. (11) is 15.42, and by the experiment it is 16.51. The
performance of each is shown in Fig. 3 : For the ideal case
the performance is plotted as solid line, and for the non-
ideal case the theoretical constant T as a dash-dot line, and
simulated constant T as a dash line.

From this �gure, the CFAR loss, which is de�ned as the
di�erence between the SNRs of the ideal and real cases at
PD = 0:5, is 0.65dB and 0.95dB, respectively. These losses
are smaller than other CFAR detectors due to the large
value of average window length. When the length of this
window, N , is larger, the CFAR loss decreases.

3.2. Application to Actual Sag Data

We have used this adaptive detection scheme to identify
the beginning and ending of several voltage sag disturbance
events. In Fig. 4 we present a typical result for high-voltage
transmission lines. This data was recorded with 3840 Hz
sampling rate in Texas in 1997. It is a phase B signal among
three phases and its RMS voltage is 138 kV. The amplitude
of the data shown in Fig. 4 is normalized. The horizontal-
axis used in Figs. 4 (a) (b) (c) is the sampling index and
its scale can be mapped from 0 to 0.26 second. Thus the
voltage sag is initiated over a very short period of time.

The normalized actual sag disturbance data is shown in
Fig. 4 (a), and 17% voltage drop , i.e., sag, takes place over
5 cycles. Fig. 4 (b) shows the output q(n) of square law
processing whose input is the output e(n) of the prediction
error �lter as indicated in Fig. 1. Note that in this �gure,
the vertical-axis has a log scale. As shown in this �gure the
local noise mean is not a constant, but varies. To calculate
the constant T we selected 10�6 for PFA. As a result of the
tests described previously, the constant T was selected to
be 16.51 by the simulation. The threshold THR, formed by
multiplying the result of the local noise mean and the con-
stant T, is shown in the same �gure. This THR value also
changes adaptively with the variation of the background
noise mean. The time at which q(n) exceeds the threshold
THR denotes the occurrence of a disturbance.

The output of this algorithm Y is plotted in Fig. 4 (c)
as 1 (the test cell is larger than THR) or 0 (the test cell
is not larger than THR). By examining this �gure, we can
determine the starting and ending times of sagging, e.g., in
the �rst detected group the very �rst one indicates the the
start of the disturbance, and in the second detected group
the last one indicates the end of the disturbance. Their
time indices are 272 and 719, respectively. If we change
them to time they map to 0.071 second and 0.1872 second,
respectively. Thus the sag disturbance duration is 0.1162
second.

4. CONCLUSIONS

In this paper a detector with an adaptive prediction er-
ror �lter and new stop-and-go CA CFAR detector is shown
to accurately detect the power-line sag disturbance signal.
This scheme gives precise time information regarding the
starting and ending times, while current commercial RMS
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tor output

detectors are quite limited in this respect. Future work will
involve investigating the e�ects of changing the probability
of false alarm PFA on the performance of the sag detector.
To do this we will utilize a data base of voltage sag events
observed on high voltage transmission lines.
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