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ABSTRACT

In this paper we describe an embedded Hidden Markov
Model (HMM)-based approach for face detection and recog-
nition that uses an e�cient set of observation vectors ob-
tained from the 2D-DCT coe�cients. The embedded HMM
can model the two dimensional data better than the one-
dimensional HMM and is computationally less complex than
the two-dimensional HMM. This model is appropriate for
face images since it exploits an important facial character-
istic: frontal faces preserve the same structure of \super
states" from top to bottom, and also the same left-to-right
structure of \states" inside each of these \super states".

1. INTRODUCTION

A face identi�cation system can be used to detect the lo-
cation of faces from di�erent scenes and recognize them as
one of the faces stored in a database. The system must
operate under a variety of conditions, such as varying illu-
minations and backgrounds, and it must be able to handle
non-frontal facial images of males and females of di�erent
ages and races.

Previous approaches to face recognition [1] include ge-
ometric feature-based methods, template-based methods,
and more recently Hidden Markov Model (HMM) - based
methods [2]. This last approach exploits the fact that the
most signi�cant facial features of a frontal face image oc-
cur in a natural order, from top to bottom, even if the
images undergo small rotations in the image plane, and/or
rotations in the plane perpendicular to the image plane.
Therefore, the image of a face may be modeled using a one-
dimensional HMM by assigning each of these regions to a
state [2] [3] [4]. The one-dimensional HMM was extended
by Samaria to a pseudo two-dimensional HMM by adding
a marker block at the end of each line in the image, and
introducing an additional end-of-line state at the end of
each horizontal HMM [5] to preserve the two dimensional
structure of the data.

In this paper, we describe a new approach to face recog-
nition and detection using an embedded HMM as intro-
duced by Kuo and Agazzi for character recognition [6]. The
observation vectors used by our embedded HMM are ob-
tained from the two-dimensional Discrete Cosine Transform
(2D-DCT) coe�cients.

2. AN EMBEDDED HMM

A one-dimensional HMM [7] may be generalized, to give it
the appearance of a two-dimensional structure, by allow-
ing each state in a one-dimensional overall HMM to be an
HMM. In this way, the HMM consists of a set of super states,
along with a set of embedded states. The super states may
then be used to model two-dimensional data along one di-
rection, with the embedded HMM modeling the data along
the other direction. The elements of an embedded HMM
are:

� The number of super states, N0, and the set of super
states, S0 = fS0;ig 1 � i � N0.

� The initial super state distribution, �0 = f�0;ig,
where �0;i are the probabilities of being in super state
i at time zero.

� The super state transition probability matrix,

A0 = fa0;ijg

where a0;ij is the probability of transitioning from
super state i to super state i.

� The parameters of the embedded HMMs �, which
include

{ The number of embedded states in the k th su-
per state, N

(k)
1 , and the set of embedded states,

S
(k)
1 = fS

(k)
1;i g.

{ The initial state distribution, �
(k)
1 = f�

(k)
1;i g,

where �
(k)
1;i are the probabilities of being in state

i of super state k at time zero.

{ The state transition probability matrix,

A
(k)
1 = fa

(k)
1;jkg

that speci�es the probability of transitioning
from state k to state j.

� Finally, there is the state probability matrix,

B(k) = fb
(k)
i (Ot0;t1)g



for the set of observations where Ot0;t1 represent the
observation vector at row t0 and column t1. In a con-
tinuous density HMM, the states are characterized by
continuous observation density functions. The proba-
bility density function that is typically used is a �nite
mixture of the form

b
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i (Ot0;t1 ) =

MX
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c
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im ;U

(k)
im ) (1)

where N(Ot0;t1 ; �
(k)
im ;U

(k)
im ) is a Gaussian pdf with

mean vector �
(k)
im and covariance matrix U

(k)
im , c

(k)
im is

the mixture coe�cient for the mth mixture in state i
of super state k, 1 � i � N

(k)
1 .

Let �(k) = f�
(k)
1 ;A

(k)
1 ;B(k)g be the set of parameters

that de�ne the kth super state. Using a shorthand notation,
an embedded HMM is de�ned as the triplet

� = (�0;A0;�): (2)

where � = f�(1);�(2); : : : ;�(N0)g.
This model is appropriate for face images since it ex-

ploits an important facial characteristic: frontal faces pre-
serve the same structure of \super states" from top to bot-
tom, and also the same left-to-right structure of \states"
inside each of these \super states". The state structure of
the face model and the non-zero transition probabilities of
the embedded HMM are shown in Figure 1. Each state in
the overall top-to-bottom HMM is assigned to a left-to-right
HMM.
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Figure 1: Embedded HMM for face recognition

The states of the embedded HMM are described by sin-
gle density Gaussian pdf

b
(k)
i (Ot0;t1) = N(Ot0;t1 ; �

(k)
i ;U

(k)
i ) (3)

and the covariance matrix is assumed to be diagonal.

3. THE OBSERVATION VECTORS

A set of overlapping blocks are extracted from the image
from left to right, and top to bottom using the technique
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Figure 2: Face image parameterization and blocks extrac-
tion

shown in Figure 2. In our embedded HMM, the observa-
tion vectors consist of six coe�cients within a rectangular
window (3� 2) over the lowest frequencies in the 2D-DCT
domain.

4. TRAINING THE FACE MODELS

For face recognition each individual in the database is repre-
sented by an embedded HMM. A set of images representing
di�erent instances of the same face is used in the training
set. For face detection, a set of face images representing
frontal views of di�erent individuals is used to train one
face model. For both detection and recognition, the ob-
servation vectors were used to train the models as follows
(Figure 3):
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Figure 3: Training Scheme

1. First, the data is uniformly segmented to obtain ini-
tial estimates of the model parameters. The obser-
vations of the overall top-to bottom HMM are uni-
formly segmented in N0 vertical super states, then,
the data corresponding to each of this super states

is uniformly segmented from left to right into N
(k)
1

states.

2. At the next iteration, the uniform segmentation is
replaced by a doubly embedded Viterbi segmentation
algorithm [6] illustrated in Figure 4.

First, the Viterbi segmentation is applied to each row
of the image, and the super state probabilities
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Figure 4: Doubly Embedded Viterbi Algorithm

are calculated, where q
(t0)
1;t1

; 1 � t1 � T1 represent
the state of a super state assigned to the observation
Ot0;t1 . The super state probabilities, together with
the super state transition probabilities A0 and the
initial super state probabilities �0, are used to per-
form the Viterbi segmentation from the top to the
bottom of the image and to determine:

P (O1;1 : : :O1;T1 ; : : :OT0;1 : : :OT0;T1 ; q0;1 : : : q0;T0 j�)

or using a shorthand notation P (O;Qj�). q0;t0 ; 1 �
t0 � T0 are the super states corresponding to row t0.

3. The model parameters are estimated using an exten-
sion of the segmental k-means algorithm [6] to two
dimensions.

4. The iteration stop, and the parameters of the embed-
ded HMM are estimated, when the Viterbi segmen-
tation likelihood at consecutive iterations is smaller
than a threshold.

5. FACE RECOGNITION

The probability of the observation sequence given an em-
bedded HMM face model is computed via a doubly embed-
ded Viterbi recognizer. The model with the highest likeli-
hood is selected and this model reveals the identity of the
unknown face. The face recognition system has been tested
on the Olivetti Research Ltd. database (400 images of 40
individuals, 10 images per individual at the resolution of
92 � 112 pixels). Half of the images were used in training,
and the other half were used for testing. The database con-
tains face images of people of di�erent ages, both males and
females, showing di�erent facial expressions, hair styles, and
eye wear (glasses/no glasses). The recognition performance

of the method presented in this paper is 98%. The complex-
ity and the recognition rate of this method are compared
to other HMM-based methods in Table 1.

Recognition Complexity
Rate (additions)

HMM [2, 3, 4] 85% N2
0T0

HMM [8] 90-95% (
PN0

k=1
N

(k)
1 )2T0T1

Embedded 98% (
PN0

k=1
(N

(k)
1 )

2
T1)T0+

HMM N0
2T0

Table 1: Comparison of the recognition rate and numerical
complexity (additions) for the HMM-based approaches to
face recognition

Figure 5 presents some of the recognition results. The
crossed images represent incorrect classi�cations, while the
rest of images are examples of correct classi�cation.

Figure 5: Face Recognition Results

6. FACE DETECTION

The goal of a face detection system is to locate the position
of all faces in an image. A robust face detection system
has to detect the faces of people, both males and females,
from di�erent races independent of their appearance (facial
hair, glasses/no glasses), orientation and background. The
embedded HMM structure presented in this paper allows
for an e�cient implementation of such a system using the
doubly embedded Viterbi segmentation algorithm.

First the probability of each observation vector given
a state and a super state of the model is computed. Let
WM ; HM and Wm; Hm be the numbers of observation vec-
tors in the horizontal and vertical direction corresponding
to the largest and respectively smallest face that can oc-
cur in an image, and let Ot0;t1 be the observation vector
corresponding to the left top corner of a rectangular face
pattern. The doubly embedded Viterbi algorithm can be
applied to each window of size WM �HM . The total num-
ber of additions required in this case is (W � Wm)(H �

Hm)(HMN2
0 + HMWM

PN0

k=1
(N

(k)
1 )2). To further reduce

the complexity of the system, �rst all the super state prob-

abilities P (Ot0;t1 : : :Ot0;t1+WM ; q
(t0)
1;t1

: : : q
(t0)
1;t1+WM

j�(k)) are



computed for all (t0; t1) and super states k. Second, the
face likelihoods of the rectangular pattern are obtained by
running the Viterbi algorithm for the overall top to bottom
structure. Therefore, the total number of additions is de-

creased to H(W�Wm)WM

PN0

k=1
(N

(k)
1 )2)+(W�Wm)(H�

Hm)N
2
0HM . No extra computation is required to deter-

mine the likelihoods of the observation vectors correspond-
ing to the rectangular patterns included in the window of
size WM � HM and having the left top corner at Ot0;t1 .
For the template-based face detection systems, the likeli-
hood of the patterns of di�erent sizes has to be recomputed
and consequently these methods are computationally less
e�cient.

The accuracy of the detection was improved by includ-
ing the state duration into the overall top to bottom HMM.
The duration di of super state i is modeled using the Poisson
distribution [8] of parameter li. It has been shown [7] that
the inclusion of the states duration increases signi�cantly
the complexity of the system. However, a very simple and
e�cient method is to compute the face likelihood according
to:

log ~P (O;Qj�) = logP (O;Qj�) + �

N0X

i=1

log pi(di)

where � is a constant set to 1000 in our experiments. The
parameter of the Poisson distribution is obtained in the
training part according to:

li =
number of observations in super state i

total number of observations in super states

To deal with di�erent scales of the images in the training
set and test set, the Poisson parameter is normalized to an
integer value closest to:

~li = li
lenght of test sequence

average length of training sequence

The face likelihoods obtained for each rectangular pattern
in the image are compared in turn to a threshold and the
patterns that have likelihoods that increase this threshold
are face candidates. It is natural that close patterns to
have close likelihoods and therefore several patterns around
the actual face location are declared to be face candidates.
In order to remove these \false alarms", a face candidate
represents a valid face location if its likelihood is larger than
all the face likelihoods of the face candidates in a vicinity.

The face detection system proposed in this paper has
been tested on 288 images of the MIT database. Each of
these images has the resolution 240� 256 pixels and shows
one face of 16 individuals at di�erent scales, orientations,
and illuminations in a moderately cluttered background.
The training set consists of 40 images at the resolution
92 � 112 of 40 individuals from the Olivetti Research Ltd.
database. Figure 6 shows some of the detection results. The
detection rate of the face detection system described in this
paper is 86%.

7. CONCLUSIONS

This paper describes an embedded HMM approach for face
detection and recognition that uses an e�cient set of ob-
servation vectors obtained from the 2D-DCT coe�cients.

Figure 6: Face Detection Results

The use of an embedded HMM model for the face is jus-
ti�ed by the structure of the face, and also by the rela-
tively low complexity of the model. The use of an embed-
ded HMM increases by over 10% the recognition rate of the
one-dimensional HMM and reduces signi�cantly the com-
putational complexity of the pseudo 2D-HMM face model
introduced by Samaria [5].

In this paper a new face detection approach was intro-
duced that uses the same face model. Preliminary results
show that this approach which allows for an e�cient im-
plementation, is more 
exible with respect to variations
in scale, orientations and illuminations than the one di-
mensional HMM approach [4] or other template-based ap-
proaches.

Future work will be directed towards improving the face
detection system by using the mixture density modeling
of the states and by increasing the number of embedded
HMMs used to model all face appearances.
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