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ABSTRACT

An entirely new set of criteria for the design of kernels for
time-frequency representations (TFRs) has been recently pro-
posed [1], [2], [3]. The goal of these criteriais to produce kernels
(and thus, TFRs) which will enable accurate classification with-
out explicitly defining, a priori, the underlying structure that
differentiates individual classes. These kernels, which are opti-
mized to discriminate among multiple classes of signals, are re-
ferred to as signa class-dependent kernels, or simply class-
dependent kernels. Until now, our technique has utilized the
Rihaczek TFR as the base representation, deriving the optimal
smoothing in time and frequency from this representation. Here
the performance of the class-dependent approach is investigated
in relation to the choice of the base representation. Classifier
performance using several base TFRs is analyzed within the
context of radar transmitter identification. It is shown that both
the Rihaczek and the Wigner-Ville distributions yield equivalent
results, far superior to the short-time Fourier transform. In addi-
tion, a correlation reduction step is presented here. Thisimproves
performance and extensibility of the class-dependent approach.

1. INTRODUCTION

Recently, we have devised a method that allows the classifi-
cation task to, given adequate and representative training data,
ascertain the relative role of time and frequency resolution in
classification. This dlows the optimaly smoothed time-
frequency representation (TFR) to be constructed.

Our approach is based on the premise that automatic detec-
tion and classification systems should be provided with only
enough input resolution to achieve needed performance. Namely,
resolution that is too great will potentially require a large detec-
tor or classifier training set and will be sensitive to irrelevant
features and/or noise. Large dimensionality detectors and classi-
fiers are also computationally expensive and slow. It should be
noted that we are not referring to or bound by implicit Heisen-
burg or window-related resolution limitations O we are instead
explicitly limiting the resolution to optimize accurate classifica-
tion.

To generate this optimally smoothed TFR a base represen-
tation is used to determine the optimal smoothing kernel. There-
fore, this approach can be thought of as determining an optimal
smoothing kernel given the base representation. Until now, our
technique has utilized the Rihaczek TFR as the base representa-
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tion. Here the effect of this choice is explored within the context
of radar transmitter identification.

The goal of radar transmitter identification is to determine
the particular transmitter from which a signa originated, using
only the received waveform. No localization information is ex-
ploited to accomplish this task. Each transmitter must be identi-
fied in the presence of other transmitters of the same type (i.e.
same model number but different serial number). Individual
transmitter identification can be accomplished by exploiting the
unintentional modulation present in these radar signals. This
modulation is a result of subtle variations between particular
transmitter components, and acts as a signature for an individual
radar station.

2. BACKGROUND

Modern TFR research often begins by selecting akernel (i.e.
generating function) ®[n,7] that operates upon an instantaneous

autocorrelation function:
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The resultant TFR, P[n,k], arises from the discrete Fourier
transform (in 7) of the result of multiplying the kernd (in 7) and
convolving the kernel (in n) with the instantaneous autocorrela-
tion function, Rn,7]. As an dternative, a discrete Fourier
transform (in n) can be applied to the instantaneous autocorrela-
tion function, to yield an ambiguity function:
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There is an equivalent kernel, ¢[77,7], which operates mul-
tiplicatively in both dimensions upon the ambiguity function,
An,1]. These two kernels are also related by a discrete Fourier
transform (in n):
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Any non-zero extent of ¢n,7], in n andlor 7 can effect a
smoothing on P[n, k] in time and/or frequency respectively. For
example, if ¢[n7,71]=0 for all vaues except those on the =0
axis, then all temporal information are smoothed and only
steady-state frequency information is retained in P[n,k|.

In past time-frequency research, kernels for a number of
properties, such as finite-time support and minimizing quadratic
interference, have been derived. Although some of these repre-
sentations may offer advantages in classification of certain types
of signals, the goal of sensitive detection or accurate classifica-
tion has not been explicit. The ability of the aforementioned ker-
nel to reduce time and/or frequency resolution, embodied within



the explicit goa of optimal classification (i.e. minimum overall
probability of error), isthe basis for the approach outlined below.
When the kernel, ¢[n,1], is designed with the goal of optimal
classification we refer to it as the signal class-dependent kernel,
or simply class-dependent kernel. Furthermore, we refer to the
corresponding TFR as the class-dependent TFR.

3. OUR APPROACH AND METHODS"

Data provided by the Naval Research Lab (NRL) was util-
ized in thiswork [5]. This data set contains ten radar pulses from
four transmitters. This data comprises three tests from each of the
four sources called A2, CCC2, F2, and H2. These will be de-
noted as class one through four. Each pulse contains 180 com-
plex samples (i.e. in-phase and quadrature components). Exam-
ple time series and TFRs of this dataare givenin [4].

In order to experimentaly study the class-dependent ap-
proach, N-fold cross-vaidation was used [6]. The data were ran-
domly divided into nine training examples and one test example
for each of the four classes. Training and testing was performed.
This process was repeated and the results averaged, to yield an
honest performance estimate of the system.

Our approach is amodification of the signal class-dependent
method that has been described in more detail before[1], [2], [3],
[4]. The previoudly described approach finds the single kernd,
@ n,1], which maximizes the distance, in a mean-square sense,
between the estimated ambiguity functions for each of C different
classes. Defining a kernel matrix as ¢ =@fr7,7] and an ambiguity
matrix for classc as A. = A.[17,7], the kernel is selected to sat-
isfy:
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where o represents the Hadamard product (i.e. an element-by-
element product).
In practice, this maximization is accomplished by rank-

ordering the kernel points according to Linear Fisher’s Discrimi-

nant Ratio:
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Abi[q,r] is an element from the ambiguity function of tfe

training example from class. For actual classification of an

unknown time series, the ambiguity function is multipliedsin

andr , by a binary kernel mask, which is set to “1” at one optimal

© This approach has been previously proposed in [4], and will serve as
the basis to analyze a variety of base distributions here.

and, optionally, subsequently lower-ranked kernel points (often
required in practic€). These kernel points, depending on their
locations, effect a smoothing in time and/or frequency of the
unknown data. The smoothed version is then compared to a
smoothed representative from each class, derived during training.
As an added benefit, the class-dependent ambiguity function
(¢oA) can be transformed into a class-dependent time-
frequency representatioBD[n,k]. The implicit time-frequency
smoothing can then be viewed.

The optimal number of kernel pointise( number of points
set to “1” in the binary kernel mask) is determined by evaluating
the classifier performance using tkebest kernel pointd.é. the
K points with the largest FDRKy is selected to be thi¢ for
which the probability of overall correct classification is greatest.

We have recentlyound that performance of this class-
dependent technique can be improved by excluding those kernel
points that are strongly correlated with higher ranked kernel
points. Ideally, full ranking in multiple feature dimensioeg(
Procrustes angle [7], Fisher’s Linear Discriminant [8]) would be
preferable to the combination of FDR followed by correlation
removal. Due to the number of available features (4096 for a 64
by 64 ambiguity function) the ideal approach is computationally
prohibitive. Thus, this sub-optimal approach is employed. The
incorporation of this correlation reduction differs from our earlier
approach [4].

To classify a particular unknown test signal, an ambiguity
function is estimated from the signal. After masking with the
previously determined binary kernel, the class of the unknown
signal is estimated via a maximum likelihood (ML) detector [9]
(classifier). To simplify the ML detector, the underlying data is
assumed Gaussian. Under this assumption, the ML detector is the
multivariate Gaussian classifier (MVG) [10]. The mean and co-
variance statistics of the selectégoints for each class (utilized
by MVG) are estimated from the training data.

PREPROCESSING
Before classification, each data segment is preprocessed.

First, each radar pulse is individually demeaned and then nor-

malized to a standard deviation of one, in order to prevent clas-

sification based on irrelevant or variable features. The second
step is necessitated by the particular classification technique

employed herein. The center frequency of the transmitter is a

variable parameter. Because our moet seeks to find a time-

frequency representation that maximizes between-class separa-
tion, if a particular class in the training set contains a center fre-
guency bias, this will be used as an essential class discriminator.

The variability of this parameter makes this unusable as a dis-

criminatory feature. There are three possible solutions to ensure

this feature is not incorporated into the classifier.

e Given enough representative data fraach transmitter
(presumably including variability in the center frequency)
the classifier will discard this feature as a possible means of
classification. This is equivalent to the classifier “learning”
the center frequency is irrelevant.

Y This binary mask is selecting, in effect, “features” from the set of
points that make up the ambiguity function.



e Only the magnitude of the radar pulse is used for classifica-
tion. This presumes that there is enough information in the
envelope of the radar signature to discriminate classes. We
have found that thisis not the case.

*  The data set is preprocessed to modulate all pulses to the
same center frequency. This involves estimation of the cen-
ter frequency of each pulse and modulation to a new prede-
termined center frequency.

Due to the size of the data set provided, the latter method is
preferred. The large signa to noise ratio of this data makes esti-
mation of the center frequency of the signa relatively easy. It
was determined that 34 out of the 40 examples had a center fre-
guency of 0.151(2m) radians per second while 6 pulses (all from
class one) had a center frequency of 0.145(2m) radians per sec-
ond.

The selected preprocessing algorithm for this data was to
modulate al signals to a center frequency of 0.151(2m) radians
per second. Once this preprocessing algorithm is applied to the
data, transmitter identification is implemented as described
above.

4. EFFECT OF BASE REPRESENTATION ON
OVERALL PERFORMANCE

It is important to note that the kernel for optimal separation
() maximizes the time-frequency difference given the base
representation (A.). In our previous work, the Rihaczek ambigu-
ity function has been used as the base representation. The Rihac-
zek was initially selected because this distribution is the simplest
form for the base representation [1]. This intuitively appears to
be a desirable property for the base distribution, however no
theoretical reason exists to prevent the use of other distributions.

Here, the effect the base representation will be investigated.
The performance of the classifier using the Rihaczek ambiguity
function as the base representation is compared to the perform-
ance obtained with the same classifier using the Wigner-Ville
(WV) [11] and short-time Fourier transform (STFT) base repre-
sentations.

Case 2. classification using the original data with timing jitter
uniformly distributed over the interval £ one sample,

Case 3. classification using the original data with additive
white Gaussian noise (AWGN) yielding an SNR of 14
dB, and

Case 4. classification using the original data with timing jitter
uniformly distributed over the interval = one sample
and AWGN yielding an SNR of 14 dB.

In all cases, it was found that the 64 by 64 point ambiguity
function provided the best performance for CD-R and CD-WV.
The CD-STFT performed best using a &) (by 4 (1) point
ambiguity function. For the STFT, a non-overlapping rectangular
window was used on the data. A correlation threshold of 0.95
was used to determine what features to exclude. These settings
have been used in all results provided in this paper.

CASE 1 — Ideal data set.

In the original data set, all the radar pulses are perfectly
time-aligned with respect to the envelope of the signal. Using
CD-R 100% overall correct classification was achieved. This was
achieved using 1 to 6 kernel points, demonstrating the robustness
of the Rihaczek base representation. Using CD-WV provided
essentially the same classification performance. CD-STFT's
performance was still acceptable, achieving 91.12% correct clas-
sification on this data set. The rank order curves for each of these
classifiers are shown in Figure 1 (a). Using CD-R or CD-WV
yields a more robust classifier than CD-STFT on this idealized
data set. This result foreshadows the performance over the three
remaining cases.

CASE 2 — Timing jitter.

Timing jitter uniformly distributed over the interval + one
sample was introduced. With jitter, CD-R still achieved perfect
performance: 100% overall correct classification. Again using
CD-WV provides essentially equivalent performance. CD-STFT
showed significant degradation from Case 1, with a maximum
overall correct classification of 86.75%. The rank order curves
for each of these is shown in Figure 1 (b). CD-R and CD-STFT

For brevity's sake, the three classifiers studied here will be again are more robust classifiers than CD-STFT.

denoted as:

In comparison with our earlier approach [4], CD-R per-

«  CD-R: Class-dependent classifier derived from the Rihac- formance has increased. This is due to the incorporation of the

zek ambiguity function,

« CD-WV: Class-dependent classifier derived from the WV

ambiguity function, and

e CD-STFT: Class-dependent classifier derived from the

STFT ambiguity function.
5. RESULTS

correlation reduction step discussed earlier.

CASE 3 — Noise.

AWGN was introduced to the original data to lower the
SNR to 14 dB. Again, CD-R and CD-WV performed signifi-
cantly better than CD-STFT, providing 95.75% correct classifi-
cation. Performance using CD-STFT suffered severely, overall
correct classification achieved a meager 44.38%. The rank order

In the provided data set, all examples are time-aligned pre-cyrye for each of these is shown in Figure 1 (c).

cisely. Furthermore, the provided data set has approximately
infinite signal to noise ratio (SNR). In practice, neither condition CASE 4 — Timing jitter and noise.
can be assured. Therefore, performance of the class-dependent With the addition of noise and misalignment, the perform-
technique using the three proposed base distributions in the pres@nce of CD-R and CD-WV drop to approximately 92% correct
ence of noise and timing jitter will be investigated. Four cases classification. As expected from prior results, CD-STFT only
presented here are: achieved 42.75% overall correct classification. The rank order
Case 1. classification using the original data which contains curves for each of these is shown in Figure 1 (d).

precise time alignment between all examples,
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Figure 1. Rank-order curves for (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4. In many instances the

curves for CD-R and CD-WV overlap.

6. CONCLUSIONS

The class dependent approach has been demonstrated using
the Rihaczek, Wigner-Ville and short-time Fourier transform
ambiguity functions. The Rihaczek and Wigner-Ville are
equivalent projections for classification in the ambiguity plane.
The reason the Rihaczek and Wigner-Ville yield identical results
is clear once the formulation of both in the ambiguity plane is
analyzed. The Rihaczek differs from the Wigner-Ville only by a
modulating complex exponential. This modulation has no bear-
ing on separability and hence no bearing on classification per-
formance.

On the other hand, the short-time Fourier transform is
clearly an inferior projection. We surmise this is due to the cor-
relation present in this distribution.
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