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ABSTRACT

We propose an efficient block least-squares (BLS) algorithm for
acoustic echo cancellation. The high computation and memory
requirements associated with a long room echo make the simple,
gradient-based LMS filter a more acceptable commercial solution
than a full-fledged LS canceler. However, the LMS echo canceler
has slower convergence and worse steady-state performance than
its LS counterpart. In the proposed BLS approach, the autocor-
relation and cross-correlation of the source and echo, required in
solving the LS normal equations, are performed once per block
using FFT's. With appropriate data windowing the autocorre-
lation matrix is constrained to be Toeplitz, allowing the corre-
sponding normal equations to be solved efficiently. The positive
definiteness of the autocorrelation function eliminates the stabil-
ity problems of other fast LS algorithms. BLS can reduce the
echo residual to the level of background noise, allowing a residual
power based, statistical near-end speech detector to be devised.
Performance in real environments under various settings of filter
length, SNR, near-end speech presence, etc., is investigated.

1. INTRODUCTION

For modern hands-free communications, such as full-duplex
teleconferencing in human-to-human communication, or auto-
matic speech recognition in human-machine communication with
barge-in capability, the acoustic echo of far-end speech or system
messages needs to be cancelled. Inadequate echo cancellation can
impede successful full-duplex teleconferencing and significantly
degrade automatic speech recognition performance.

In this paper, we propose to use a block least-squares (BLS) based
algorithm for cancelling acoustic echoes in a room. Different
from typical echo in a telephone network [1], [2] the acoustic echo
generally has a much longer time-span. The actual time-span of
an echo response can, depending upon the physical size of the
room, the wall reflectivity, and the relative positioning between
speakers and microphones, easily last up to a second. At a sam-
pling rate of 8 kHz, such a room response requires an adaptive
filter of several thousand taps. The high computation and mem-
ory requirements associated with such a long filter has made the
simple, gradient-based LMS AEC a more desirable solution for
commercial applications than its LS counterpart. However, due to
its steepest descent nature, the LMS room echo canceler has cer-
tain intrinsic performance disadvantages, including: slower con-
vergence and higher echo residuals. Various attempts have been
tried to improve the convergence behavior. Most noticeable ones
are the NLMS algorithm by Duttweiler [3] and the PNLMS++
by Gay [4] where the far-end signal power and filter coefficient
magnitudes are considered in order to improve LMS canceler con-
vergence. A least-squares AEC which is capable of delivering a
higher echo cancellation performance, on the other hand, suffers
from higher computational complexity and an annoying potential
instability.
In this paper we propose a block least-squares (BLS) approach

to the room AEC problem. The autocorrelation of the source
signal and cross-correlation of the source and the echoes, both
required for solving the LS normal equations, are computed effi-
ciently in the frequency domain using FFT's. By appropriate data
windowing, the autocorrelation matrix is also constrained to be
Toeplitz and the efficient Levinson recursion is used for solving
the LS normal equations once per block. Furthermore, the pos-
itive definiteness of the autocorrelation function guarantees the
stability of the adaptive filter solution and maximum cancellation
of the received room echo. The fast convergence and the high
cancellation performance of the least-squares algorithm are guar-
anteed in the BLS canceler. By further exploiting the fact that the
echo is cancelled down to the level of background noise, we pro-
pose a residual power based, high performance, statistical near-
end speech detector. Cancellation performance in a real acoustic
environment is evaluated using computer simulation and tested
in a live acoustic environment. The performance is investigated
by changing the system parameters, including: the misalignment,
window size, SNR's etc., with and without near-end speech sig-
nals present.

2. BLS Acoustic Echo Canceler (AEC)

The following notations are used throughout this paper:
x(t) : the sound source signal played through a loudspeaker,x(t),
corresponding vector, and matrixX(t)
y(t) : room echo signal ofx(t) received at the microphone
ŷ(t) : estimated echo
e(t) : echo residual signal,e(t), corresponding vector
v(t) : background noise sample received at the microphone
s(t) : near-end speech signal sample
z(t) : y(t) + v(t) + s(t), andz(t), corresponding vector
Rxx: Toeplitz autocorrelation matrix ofx(t)
rxz: crosscorrelation vector betweenx(t) andz(t)
h(l) : l-th tap coefficient, andh is vector of the AEC filter
N : data block size
L : echo canceler length

We propose a block LS echo canceler as follows:

1. BlockN samples of source signal samples,x(t), and ob-
served microphone input samples,z(t).

2. Weightx(t) andz(t) with an appropriate tapering window.
3. Compute the autocorrelation matrix and cross-correlation

vector of the current block.
4. UpdateRxx andrxz with auto and cross-correlation of the

current block using a leakage integrator.
5. Find the adaptive echo canceler coefficients by solving the

normal equations via efficient Levinson recursion,h =
R
�1

xx
rxz.

6. Compute the estimated echo,ŷ(t), and subtract it from the
microphone input sample,z(t). Continue at1 with the next
block.

The AEC is formulated as a block LS echo cancellation algorithm.
A block, rather than sample, adaptive approach is adopted here for



the following two reasons. First, since the positions of speaker(s)
and microphone(s) in a room are relatively steady, it is a reason-
able assumption that the resultant echo return path is stationary
within a block, typically around .5 sec. Even with this stationarity
assumption, a slowly time-varying echo return path can still be
tracked using our block LS algorithm with memory. To the de-
gree that the echo return path is a linear FIR system, the LS AEC
delivers the best achievable cancellation performance.

3. Near-end Speech Detection

It can be shown that the echo residuals of the proposed block
LS AEC converge to the uncorrelated background noise level in
the mean. This high cancellation performance facilitates a novel,
near-end speech detection algorithm proposed as follows. The
near-end speech detection algorithm is based upon two estimates:
a background noise power estimate and current echo residual
power estimate. The near-end speech detection is devised based
upon a statistical hypothesis testing procedure. A similar, at least
in spirit, near-end speech detection algorithm was proposed by
Benesty, Morgan and Cho [6] where a normalized crosscorrela-
tion vector, rather than residual and background noise power esti-
mate, was used as detection parameter.
The background noise power is estimated in the current block and
used for near-end speech detection in the next block. This delay
is introduced intentionally here to prevent the background power
estimate from too closely tracking the current block speech activ-
ities. Within a block, from the first frame to� frames before the
first detection of near-end speech and from� frames after the last
detection of near-end speech to the end of the block are used to
update the background power estimate. Near-end speech detec-
tion is performed from left to right by comparing the smoothed
power of every frame with the background power estimate com-
puted in the previous block. If the smoothed power of the current
frame is higher than the background estimate by a threshold,�,
the frame is declared as near-end, otherwise, non-nearend.

4. Computational Complexities

The computational requirement of the proposed BLS echo can-
celer is low when compared with other sample adaptive LS can-
celers. This is due to two factors: (1) loading the Toeplitz autocor-
relation matrix and the cross-correlation vector is done efficiently
via FFT's; and (2) the Levinson recursion used for solving the
normal equation, the most computationally intensive module with
a complexity�L2, only needs to be performed once per block.
In the following computational breakdown, we list the number
of multiply-and-add operations as standard operations for bench-
marking. The computation complexities of the BLS AEC are
summarized as follows:

data windowing 2N
Rxx andrxz 2N logN +N
Levinson recursion L2

leakage integrator 2L
echo synthesis NL
Total NL + 2N logN + 3N + L2 + 2L
per sample L+ 2 logN + 3 + L2=N + 2L=N

For a typical AEC, we choose the block sizeN to be four times
L such that enough data samples are used to load the autocorre-
lation matrixRxx and the crosscorrelation vectorrxz. The resul-
tant complexity on a per sample basis is then roughly5=4L for a

relatively longL. Compared with the popular LMS-based AEC
which has a complexity of2L, this is favorable. Other optional
variations of echo cancelers such as dual path cancellation [5],
one for updating the filter coefficients and another for cancelling
the echoes, can be implemented. The additional computations
for such features increase the computational requirement by the
same factor for both the LMS-based and the proposed BLS-based
AECs.

5. Delay in BLS AEC

Due to its block processing nature, the BLS-based algorithm
has an intrinsic delay of one block in addition to other possible
processing delays. A delay of one block may not be acceptable
for applications that require low delay, such as full-duplex audio
teleconferencing. This delay, despite its intrinsic nature, can be
eliminated or circumvented at the price of little or no degradation
of cancellation performance.
Our proposed solution is: use the AEC filter coefficients derived
from the previous block to cancel the echoes in the current block
starting from the first sample. This strategy is quite viable when
the following two conditions are met: (1) the echo return path of
the previous block is not much different from that of the current
block, i.e., the echo return path is quasi-stationary or changes
very slowly; and (2) the BLS AEC converges to its optimal
solution with a block of data samples. For most applications, the
first condition is generally satisfied and the second condition is
true for the BLS AEC since the solution of the normal equations
guarantees the minimum error squares.
In the experimental results section, we confirm that these two
conditions are met in a live acoustic environment. Little or no
degradation of cancellation performance is observed.

6. Experimental Results

BLS AEC Performance: WGN Case
The proposed BLS AEC is first evaluated using two 15 sec. of
segments white Gaussian noise (WGN) samples, both as an exci-
tation signal for an echo return path (measured from a real room)
and as observation noise. Both 15 sec. noise processes are gen-
erated independently and twenty such pairs of WGN processes
are used in the computer simulation of a fixed echo return path.
The cancellation performance of 20 simulation runs are averaged
and depicted in Figure 1. The statistical independence of WGN
signal, most favorable for LMS convergence, has no effect on the
convergence behavior of the proposed BLS AEC. The whitening
process of the autocorrelation matrix inverse,R

�1

xx
, decorrelates

the excitation signal, and the resultant LS solution therefore con-
verges at the same rate, regardless of the correlation properties
of the input excitation. For the case of 20dB SNR and the case
of no noise, the BLS reached a decent cancellation performance,
i.e., 20.5 dB and 22.5 dB, respectively, at the first block. A 4096
sample block size and 1001 tap BLS filter were adopted in the
simulation. Starting with good cancellation at the first block, the
BLS improves as more data samples become available.

BLS AEC Performance: Real Speech Case
Using the same measured room impulse response as in the previ-
ous experiment but replacing the excitation by 20 seconds of pre-
recorded female speech, we evaluated the BLS performance with
and without additive (at 20 dB SNR) WGN measurement noise.
Again, a 4096 sample block and 1001 tap filter were used in this
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Figure 1: BLS AEC cancellation performance for WGN
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Figure 2: BLS AEC performance for speech input, no noise

experiment. The result is depicted in Figure 2 (no noise) and in
Figure 3 (20dB SNR) which plot residual power, estimated at a
frame rate of 100 frames/sec, along with measured echo power.
Due to the nonstationary nature of speech signals and the leakage
integrated auto- and cross-correlation estimates in the BLS, the
proposed BLS-based AEC achieved 10-15 dB of cancellation per-
formance in the first block, or first 50 frames, and it continuously
improved its cancellation performance until it reached around 30
dB for the no noise case or the background WGN level for the 20
dB SNR case.

Zero Delay BLS AEC Performance
The intrinsic delay of BLS is circumvented here by using echo
canceler filter coefficients derived from the previous block to can-
cel the echoes in the current block. The performance of this tech-
nique is compared in the Figure 4. The speech samples used were
recorded in a large room with a segment of near-end speech. The
echo residuals of the proposed BLS canceler are plotted in the
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Figure 3: BLS AEC performance for speech input, 20dB SNR
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Figure 4: BLS AEC performance with/without delay
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Figure 5: Filter length effects on AEC performance, no noise

figure, with and without the block delay, together with the mi-
crophone input power before cancellation. The fact that the two
curves of the echo residual power, with and without delay, are
virtually on top of each other demonstrates the validity of our
proposed zero-delay solution. The near-end speech signal is re-
markably prominent after cancellation, with or without delay.

The Effects of Filter Length
If the filter length of an AEC is much shorter than the actual room
response,a “misalignment” [1], or insufficient coverage of the full
time-span of the echo path, can result in inferior cancellation per-
formance. To study misalignment in the presence of measurement
noise we created two sets of synthetic echo signals (real speech
signals filtered with a 1001 tap pre-measured room response),
with and without additive WGN at 20dB SNR. Experiments were
conducted with BLS filters of two different lengths: 301 taps and
1001 taps.
The steady-state cancellation performance is depicted in Figures
5 (without noise) and 6 (WGN measurement noise at 20 dB SNR).
It is observed from Figure 5 that even in a steady state a BLS AEC
with underspecified taps (301) can only deliver limited cancella-
tion which is much inferior to the performance of a BLS AEC
with more taps (1001). It is also interesting to observe that while
the echo residual output of the BLS AEC of 1001 taps converges
to the background noise levels as shown in Figure 6 at a SNR of
20dB, the large modeling errors caused by the insufficient time-
span of a short BLS filter with only 301 taps are too high to settle
at the background noise levels.

Near-end Speech Detection Performance
The proposed echo-residualpower based near-end speech detector
is tested both in a hands-free, real-time, human-machine dialogue
system and off-line using a recorded speech database where near-
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Figure 6: Filter length effects on AEC performance,20dB SNR
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Figure 7: Near-end speech detection performance

end speech is present with far-end echoes. In both cases, near-end
speech signals have been detected reliably. Systematic evaluation
of the near-end speech detection performance is under current in-
vestigation and the results will be reported elsewhere. Figure 7
illustrates robust performance of the new near-end speech detec-
tor, displaying 4 traces of critical detector information from a live
experiment. The 4 panels, from top to bottom in the figure, are
the near-end detection signal, smoothed power of echo residuals,
smoothed power of microphone input (echo and near-end speech),
and echo cancellation performance. The plot makes obvious the
difficulty of using only the microphone input to detect near-end
speech. However the smoothed power of the residual signals, be-
ing essentially free from any far-end echo, show a clear advantage
for near-end speech detection over other signals.
To further illustrate the high performance of the new echo can-
celer and near-end speech detector, both the microphone input and
the echo cancelled output around a near-end speech segment are
displayed in Figure 8 in both waveforms and narrowband spectro-
grams. Before BLS cancellation, the far-end echo, due to a long
echo response, smears the corresponding spectrogram. When this
echo mixes with the near-end speech, near-end speech detection
becomes very difficult. After cancellation, while almost all far-
end echoes disappear, the near-end speech remains intact and be-
comes distinctively prominent against the low background noise
level. The cancelled output contains almost no audible far-end
speech and the near-end phrase “sports results” becomes audibly
crisp and clear, including the weak fricatives at both ends.
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Figure 8: Waveforms and narrowband spectrograms before and
after echo cancellation

7. Conclusion

We have proposed a new approach to echo cancellation in a room,
and have demonstrated its practical advantages in terms of com-
putational requirements and cancellation performance. The new
BLS echo canceler is currently in use in a hands-free Human-
Machine Dialog demo. This demo employs automatic speech
recognition and allows users to barge in naturally and begin
speaking during system prompts. The barge-in nature of the inter-
action requires a significant attenuation of room echo so that the
recognizer will not falsely trigger on system output. The current
BLS AEC implementation (using a 1001 tap cancellation filter)
takes 50% of the CPU cycles on an SGI O2, and the entire dialog
demo, including ASR, runs comfortably on the same machine.
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