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ABSTRACT

We present several analytical properties of Minimum Vari-
ance Distortionless Response (MVDR) based all-pole models that
demonstrate the advantages and usefulness of these models for
speech spectral coding. In particular, we show that a sufficient or-
der MVDR all-pole model provides a spectral envelope that fits a
set of spectral samples exactly with a parameterization convenient
for quantization purposes. In addition, we show that MVDR all-
pole filters provide a monotonically decreasing spectral distortion
with increasing filter order. Furthermore, we show that the MVDR
all-pole filter possesses the flexibility to be obtained from corre-
lations based upon either spectral samples or conventional time-
domain correlations. Finally, exploiting the insight gained from
MVDR modeling, we introduce a novel class of constrained all-
pole models for efficient spectral coding. In this approach, a subset
of the Line Spectral Frequency (LSF) parameters associated with
the all-pole model are judiciously fixed, leading to a simpler model
parameterization.

1. INTRODUCTION

All-pole models are a popular parametric approach for modeling
the short-term spectrum of speech, and for capturing the spectral
envelope [1, 2]. The ability of all-pole filters to model the short-
term spectrum of speech has led to their becoming a fundamental
part of both time and frequency domain speech compression sys-
tems [3]. Linear Prediction (LP) is a popular method for obtain-
ing the parameters of all-pole models with a long history and a
rich knowledge base from which one can draw [4, 5]. However, it
is well-known that Linear Prediction has its limitations in model-
ing voiced speech, particularly medium-pitched and high-pitched
voiced speech. In particular, the LP spectrum tends to overestimate
the spectral powers at the large valued pitch harmonics, providing
a sharper contour than the original vocal tract response. In addi-
tion, increasing the LP model order does not lead to better spectral
envelopes and often exacerbates the problem.

In [6, 7], we presented preliminary studies of Minimum Vari-
ance Distortionless Response (MVDR) spectrum modeling of voiced
speech, and demonstrated the high order MVDR spectrum’s supe-
riority over LP spectral modeling. In particular, the high order
MVDR spectrum was shown to perfectly model a voiced speech
line spectrum. In this paper, we present some additional attractive
analytical properties of MVDR spectral modeling of speech, and
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discuss the important issue of model parameterization for spec-
tral coding. In particular, it is shown that MVDR models produce
monotonically decreasing spectral distortions with increasing fil-
ter order. In addition, the MVDR spectrum that provides an en-
velope that fits a set ofL voiced speech spectral powers exactly
can be conveniently parameterized by(L + 1) parameters. Fur-
thermore, we demonstrate that the MVDR spectrum can be com-
puted from conventional time domain correlations. It can be shown
that MVDR all-pole spectrum possesses the flexibility to model all
types of speech including unvoiced speech [8]. Finally, exploiting
the insight gained from MVDR modeling, we introduce a novel
class of constrained all-pole models for efficient spectral coding.
In this approach, a subset of the Line Spectral Frequency (LSF) pa-
rameters associated with the all-pole model are judiciously fixed,
leading to a simpler model parameterization.

2. PROPERTIES OF MVDR ALL-POLE MODELING

The M th order MVDR all-pole spectrum is also known as the
Capon spectrum [9, 10] and is given by

P
(M)
MV (!) =

1

vH(!)R�1
M+1v(!)

=
1

jB(ej!)j2
; (1)

wherev(!) = [1; ej!; ej2! ; � � � ; ejM! ]T , andRM+1 is the(M+
1)� (M + 1) Toeplitz autocorrelation matrix of the input speech,
and1=B(z) is the associated MVDR all-pole filter. The MVDR
spectrum can be obtained by a simple non-iterative computation
involving the Linear Prediction Coefficients while the associated
stable and causal MVDR all-pole filter1=B(z) can be obtained by
a spectral factorization [8].

For modeling voiced speech, the MVDR all-pole spectrum has
several properties that make it an attractive candidate for spectral
coding of speech. To illustrate these analytical properties, we con-
sider a voiced speech signal modeled as a sum of harmonic signals

u(n) =

LX

k=1

ck cos(!0kn+ �k); (2)

where!0 = 2�f0 with f0 the pitch frequency of the speech, where
ck ’s are the amplitudes at the harmonics, and whereL is the num-
ber of harmonics given byL = b fs

2f0
c with fs the sampling fre-

quency, typically 8kHz. Such a voiced speech signal hasL har-
monics or alternately2L exponentials at the positive and negative
multiples of the fundamental pitch frequency. With this model for



voiced speech, the signal has a correlation sequence

ruu(m) =

LX

k=1

jckj
2

2
cos(!0km): (3)

The power spectrum exhibits a discrete line spectrum with powers
Sk = jckj

2=4 at the harmonic frequencies!0k.
With this harmonic model of voiced speech, we can make the

following observation.

Theorem 1 For filter ordersM < (2L�1), the MVDR spectrum
satisfiesP (M�1)

MV (!0l) � P
(M)
MV (!0l) � Sl. The sequence

(P
(M)
MV (!0l)�Sl) decreases monotonically asM increases, reach-

ing zero forM � (2L � 1). For filter orders ofM � (2L � 1),
PMV (!0l) = Sl.

Proof: See [6] for the basic ideas. See [8] for a more thorough
discussion.

Therefore the MVDR all-pole spectrum with sufficient filter
order can model a set of voiced speech spectral samples exactly.
Furthermore, MVDR all-pole spectral modeling of voiced speech
improves as the filter order increases. The improved modeling of
Theorem 1 can be stated in terms of local spectral distortion mea-
sures. We consider local spectral distortion measuresD(x; x̂)

which measure distortion between a true spectral valuex and
an estimatêx at a particular frequency, such as[log(x

x̂
)]2.

Theorem 2 The local harmonic spectral distortion1 at !0l,
D(P

(M)
MV (!0l); Sl), decreases monotonically as the filter orderM

increases, i.e.,D(P
(M)
MV (!0l); Sl)) �D(P

(M�1)
MV (!0l); Sl). The

spectral distortion is zero forM � (2L�1), orD(P
(2L�1)
MV (!0l);

Sl) = 0.

Proof: See [8]
It follows that any global spectral distortion which is a lin-

ear combination of local harmonic distortions must also monoton-
ically decrease. Having established this superior ability of high
order MVDR models to model voiced speech, we now consider
the parameterization of these models. We show that the MVDR
spectrum of order(2L � 1) that modelsL harmonics can still be
parameterized byL parameters.

Theorem 3 The MVDR spectrum of orderM = (2L� 1) that is
used to model perfectly a voiced speech discrete line spectrum of
L harmonics can be completely parameterized by (L+1) param-
eters: (i) a fundamental pitch value,(ii) (L � 1) Line Spectral
Frequencies (LSFs), and(iii) a gain value.

Proof: The MVDR spectrum of orderM = (2L � 1) is com-
pletely specified by the LP filterAM(z) of orderM = (2L � 1)
and the prediction error variancePe [10]. The LSFs ofAM(z)
are given by the roots of the polynomials ofP (z) = AM (z) +
z�2LAM(z�1) andQ(z) = AM(z)� z�2LAM(z�1). Because
P (z) andQ(z) have real coefficients, only the roots between! =
0 and� need to be considered. From linear prediction theory (see
[8]), P (z), which results from one step of the Levinson-Durbin
recursion, has its complex conjugate roots on the unit circle with
L roots at the pitch harmonic frequencies between0 and�: There-
fore only the pitch frequency is needed to specifyP (z). Q(z) has

1
D includes most reasonable distortion measures. For a more precise

characterization of allowableD, see [8]

roots at! = 0 and� with (L � 1) roots between! = 0 and
�. Only the(L � 1) roots between0 and� are needed to specify
Q(z). In total, the pitch frequency, the(L� 1) roots ofQ(z) be-
tween 0 and�, and the prediction error variance,Pe, are needed to
completely specify the MVDR spectrum of orderM = (2L�1).

Therefore, the MVDR all-pole spectrum of orderM = (2L�
1) that modelsL voiced speech harmonics exactly does not require
a large amount of parameterization for perfect modeling. Further-
more, most of the required parameters are LSFs which are already
used in all-pole model parameterization and quantization.

Note that many of the properties of the MVDR spectrum do
not depend on the harmonic structure of the input signal and in
fact the results in this section can be generalized to line spectra
with arbitrary frequency patterns. In fact, the MVDR spectrum of
orderM = (2L � 1) models a symmetric discrete line spectrum
consisting ofL spectral samples atL distinct frequencies exactly
[8]. If the spectral sampling scheme is known, then a low parame-
terization similar to the one in Theorem 3 can be obtained [8].

3. PERFORMANCE OF MVDR MODELING OF SPEECH

Now we show some examples illustrating the properties of MVDR
all-pole models. First, we consider the case of modeling a set of
spectral samples, an important task in spectral coding of speech.

3.1. MVDR modeling of speech spectral samples

In these examples, the MVDR spectrum is computed based on cor-
relations in Eq. 3 in which the spectral samples are determined
from conventional peak-picking methods.

Example 1:Perfect MVDR modeling of non-uniformly spaced spec-
tral samples. In this example, 10 non-uniformly spaced spectral
samples are used to form a discrete line spectrum at both positive
and negative frequencies. The 10 samples are modeled by both
MVDR and LP spectra (with real filter coefficients) of filter order
M = 19. The results of this experiment are illustrated in Figure 1.
The MVDR spectrum provides an all-pole envelope that fits the 10
spectral samples exactly while the LP spectrum does not provide
good estimates of the spectral samples.

Example 2: MVDR Spectral Sample Modeling for Suboptimal
M For this example, a fixed voiced speech spectrum was sam-
pled for a pitch frequency of 280 Hz, resulting inL = 14 har-
monics. The MVDR all-pole spectral estimates of filter orders
M = 10 to (2L � 1) = 27 are compared to the true spectral
powers by a Discrete Log-Spectral DistortionLSD = [ 1

L

PL

m=1

[10 log10 P (!0m)�10 log10 P̂ (!0m)]2]1=2 whereL is the num-
ber of harmonics,P (!) corresponds to the true spectral powers,
and P̂ (!) corresponds to the estimated spectral powers. The re-
sults are illustrated in Figure 2. As expected, the MVDR dis-
crete spectral distortion monotonically decreases as the filter or-
der increases, with perfect modeling when the filter orderM =
(2L�1) = 27. Such a filter can be characterized by(L+1) = 15
parameters.

Furthermore, the MVDR estimates for the three harmonics
with the largest powers in the voiced speech line spectrum were
compared to the true powers, and local Log Spectral Distortions
were computed. The results are in Figure 3. The MVDR spectral
estimates have an initial positive bias that decays to zero as the fil-
ter order increases, resulting in monotonically decreasing spectral
distortion. The LP spectral estimate distortions are also shown,



and tend to get very large as the filter order is increased, resulting
in worsening spectral distortion.

3.2. MVDR spectrum based on time domain correlations

In the previous section, the MVDR all-pole spectrum was used to
provide a perfect all-pole envelope fit to set of spectral samples.
In this section, we briefly consider MVDR all-pole models that
are based on time-domain correlations. More extensive discus-
sion and performance analysis can be found in [8]. In these exam-
ples, biased correlation estimates of the speech,r̂(0); � � � ; r̂(M)
are computed for a block of speech ofN = 160 samples, i.e.
r̂xx(m) = 1

N

PN�m�1

n=0
x(n +m)x(n); 0 � m � N � 1. The

MVDR spectrum is computed from the Linear Prediction Coeffi-
cients based upon these time-domain correlations.

Example 3:MVDR Modeling of 4 Voiced Spectra with Different
Pitch Frequencies. In this experiment, we compute the MVDR
spectrum for four different voiced speech spectra of varying pitch
frequencies. The results are shown in Figure 4. In all cases, the
MVDR spectrum has an order roughly two times the number of
pitch harmonics. The MVDR spectrum offers a smooth contour
that provides a good estimate of the spectral powers at the har-
monics.

The MVDR spectrum is also applicable to unvoiced speech
and mixed spectra and need not be based upon frequency domain
spectral sampling methods. For a more comprehensive perfor-
mance study of MVDR spectral modeling of speech, see [8].

4. ALL-POLE MODELS WITH CONSTRAINED LSF
LOCATIONS

For low bit rate speech coders, primarily harmonic coders, quan-
tizing (L� 1) LSFs, a pitch value, and a gain that characterize the
MVDR all-pole envelope that perfectly modelsL spectral sam-
ples is suitable for high pitch speech. For medium and low pitch
speech, all-pole models with simpler parameterization are desir-
able.

In this section we introduce a novel class of constrained all-
pole models. The constraints in these models are in terms of the
location of a subset of the LSFs associated with the model. By
deliberately constraining the locations of LSFs, the number of pa-
rameters required for the characterization of the all-pole model is
reduced. For a detailed study of all-pole models with constrained
LSFs, see [11]. The particular class of all-pole filters introduced
here is based upon the MVDR spectrum and exploits the property
highlighted in Theorem 3. In particular, if we are allowed a model
with only (P + 1) parameters,P < L, then from Theorem 3 the
MVDR spectrum of orderM = 2P �1 parameterized by(P +1)
parameters can model onlyP harmonic exactly. We develop an ap-
proach that uses this property and tries to model all the harmonics
in an optimal manner. In this constrained LSF MVDR approach,
the frequency of theP harmonics are fixed and their power levels
determined to ensure that the resulting MVDR spectrum sampled
at the actualL harmonic locations matched the power of theL
harmonics in an optimal manner. Fixing the location of theP har-
monics in a predetermined manner constrains the locations of the
LSF (c.f. Theorem 3). We now elaborate on this approach.

TheP spectral powersja1j2=4; � � � ; jaP j2=4 at P harmonic
frequencies!c; 2!c; � � � ; P!c where!c = �=(P + 1) determine
the constrained LSF MVDR spectrumPCL�MV (!) of order(2P�

1). TheP harmonics have a correlation sequence ofrP (m) =PP

k=1

jakj
2

4
cos(!ckm), and the Constrained LSF MVDR spec-

trum of orderM = 2P � 1 is specified by

PCL�MV (!) =
1

vH(!)R�1
(2P)v(!)

(4)

whereR(2P) is the 2P � 2P Toeplitz Autocorrelation matrix
formed with correlation sequencerP (m).

The P spectral powers are selected such thatPCL�MV (!)
sampled at theL voiced speech harmonic frequencies is approxi-
mately equal to theL true voiced speech spectral powers, or

PCL�MV (!) �
jclj

2

4
; l = 1 � � �L: (5)

In order to compute theP spectral powers, we need to carry out
some manipulations. The matrixR(2P) can be decomposed as
R(2P) = WcDAWc

H whereWc is a 2P � 2P matrix with
Wc = [VcjV

�
c ] and whereVc = [v(!c)v(2!c) � � �v(P!c)], in

whichv(!) is defined as in Eq. 1, andDA is a2P � 2P diagonal
matrix withDA = [�A 0

0 �A
] where�A is a diagonal matrix ofP

unknown spectral parameters with(�A)ii = jaij
2=4.

Utilizing the matrix decomposition, the Constrained LSF MVDR
spectrum’s desired property in Eq. 5 has the form

v
H(l!0)W

�H
c D

�1
A W

�1
c v(l!0) �

4

jclj2
; l = 1 � � �L: (6)

If we defineu(l!0;!c) = Wc
�1v(l!0), we can rewrite the de-

sired property as

u
H(l!0;!c)DA

�1
u(l!0;!c) �

4

jclj2
; l = 1 � � �L:: (7)

Putting together the desired properties for allL harmonics into
matrix form results in

Qa � c; (8)

whereQ is anL�P matrix with elementsQij = (juj(i!0;!c)j
2+

ju(j+P )(i!0;!c)j
2) in whichuj(i!0;!c) is thejth element of the

vectoru(i!0;!c) = Wc
�1v(i!0) defined above,a is aP � 1

vector of the reciprocals of the unknown spectral powers, i.e.ai =
4=jaij

2; i = 1; � � � ; P , andci = 4=jcij
2; i = 1; � � � ; L is aL � 1

vector of the reciprocals of the true voiced speech spectral powers.
For this overdetermined system ofL equations inP unknowns,

incorporating perceptual considerations,a can be obtained as a so-
lution to the weighted least squares problem [11]

min
a

kU(Qa� c)k2; (9)

whereU is aL� L diagonal weighting matrix with theL voiced
speech spectral powers along the diagonal, i.e.Uii = jcij

2=4:

Example 4:Example of Constrained LSF MVDR Modeling. We
consider the case of a voiced speech signal consisting ofL = 24
harmonics. The Constrained LSF MVDR model is characterized
by P = 18 + 1 = 19 parameters. The results are shown in Figure
5. The Constrained LSF MVDR does a reasonable job of modeling
the voiced speech harmonics.

For many cases, preliminary results indicate that Constrained
LSF MVDR spectra with parameterization set to0:8L < P <
L provide reasonable modeling. A more detailed study of Con-
strained LSF MVDR and other model order reduction techniques
can be found in [11].
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Figure 1: MVDR (solid) and LP (dashed) Spectral Modeling of
10 non-uniformly spaced spectral samples with Filter Orders of
M=19. FromExample 1.
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Figure 2: Comparison of MVDR Spectral Distortions for various
filter orders in modeling of a synthetic 280 Hz voiced speech spec-
trum withL = 14 harmonics. FromExample 2.
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Figure 3: Comparison of MVDR and LP Spectral Distortions in
modeling the 3 largest power voiced harmonics. FromExample 2.
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Figure 4: MVDR spectral modeling of four different voiced speech
spectra. The MVDR spectra are computed from conventional
time-domain correlations of frames ofN = 160 samples of speech
(a) M=60, f=138Hz (b) M=56, f=144Hz (c) M=38, f=213 Hz (d)
M=30 f=275. FromExample 3.
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Figure 5: Comparison of True Spectral Powers (O), and Con-
strained LSF MVDR power estimates (x), with number of quan-
tization parameters P=18. FromExample 4.


