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ABSTRACT

We consider the optimal orthonormal subband coding of zero
mean cyclostationary signals, with N-periodic second order
statistics. A 2-channel uniform filter bank, with N-periodic
analysis and synthesis filters, is used as the subband coder.
A dynamic scheme involving N-periodic bit allocation is
employed. An average variance condition is used to measure
the output distortion. The conditions for maximizing the
coding gain parallel those for the case when the signals are
Wide Sense Stationary (WSS) and the analysis and synthesis
filters and the bit allocation time invariant, in that the blocked
subband signals must be decorrelated and the subband power
spectral densities must obey an ordering. Some additional
conditions on this ordering, over and above those required
for the WSS case, are needed.

1. INTRODUCTION

We consider the optimum orthonormal subband coding of
zero mean wide sense cyclostationary (WSCS) signals.
A signal, x(k) is WSCS with period N if for all k; l:
E[x(k)x(l)] = Rx(k; l) = Rx(k + N; l + N). A wide
variety of man made signals encountered in communica-
tion, telemetry, radar and sonar systems, as well as several
generated by nature [1], are WSCS.
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Figure 1: A two channel filter bank

The subband coder considered here is a 2-channel uni-
form maximally decimated filter bank depicted in fig. 1.
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Here x(k) is WSCS with period N and at time k, Qi is
a bi(k)-bit quantizer. When x(k) is Wide Sense Station-
ary (WSS) one selects the analysis filters Hi(k; z

�1) and
the synthesis filters Fi(k; z�1) to be linear time invariant
(LTI). Since x(k) here is WSCS with period N , we assume
that these are Linear Periodically Time Varying (LPTV) with
period N . A linear filter with impulse response h(k; l) is
called N-periodic, if for all k; l: h(k; l) = h(k+N; l+N).
The time index k in Hi(k; z�1) and Fi(k; z�1) recognizes
their lack of time invariance. We assume that the filter bank
is orthonormal, i.e. for all square summable inputs x(k), the
combined energy of the two subband signals vi(k) equals
the energy in x(k), and in the absence of the quantizers the
filter bank output x̂(k) matches x(k) for all x(k). Under
these conditions the subband signals are WSCS with period
N . Accordingly the bit allocation scheme we will adopt is
what we call Periodically Dynamic Bit Allocation (PDBA),
where we choose each bi(k) to be N -periodic, i.e

bi(k +N) = bi(k): (1)

Our goal is to select bi(k) and the filters Hi(k; z�1) and
Fi(k; z�1) so that the average variance of x̂(k)�x(k) is the
minimum, subject to orthonormality and a constant average
transmission bit rate, i.e. for a fixed given b and all k

b = (b1(k) + b2(k))=2: (2)

This consequently maximizes the coding gain. The op-
timization is performed on the basis of the second order
statistics of x(k). (Consult [2] on estimating the statistics of
WSCS signals.)

Past work on the orthonormal subband coding of signals
includes [3]- [5]. The work that most influences this paper
is by Vaidyanathan, [6]. Assuming that x(k) is WSS, zero
mean, and using its second order statistics, [6] provides a
complete solution to the problem of obtaining the uniform
optimal M-channel orthonormal filter bank that maximizes
the coding gain for this x(k).

Since [6] influences our paper quite heavily, we briefly
outline some of the ingredients of its analysis in Section



2. Section 3 gives preliminaries and reduces the optimum
subband coding problem described above to a precise math-
ematical problem. Since LPTV systems can be converted
by the blocking procedure to LTI systems, it may at first
sight appear that the theory developed in [6] should extend
very easily to the framework we plan to consider. However,
Section 3 demonstrates that the presence of the quantization
devices underlying subbbandcoders changes the very nature
of the optimization criterion, making the extension sought
here nontrivial. Section 4 gives the main results. Section
5 concludes. All proofs are omitted because of space con-
straints and can be found in [7] and in [8], a forthcoming
journal version of this paper.

2. THE WSS CASE

In this section we recount the essentials of the result of [6],
which considers the case where x(k) is WSS, the analysis
and synthesis filters are all LTI and the quantizer bits bi are
constant. Though the result of [6] applies to filter banks
having arbitrary number of channels, we will consider only
the 2-channel case. The quantizer noise model used by [6]
is:

wi(k) = vi(k) + qi(k) (3)

where qi(k) is zero mean, independent from vi(k) and has
variance

�2qi = c2�2bi�2vi ; (4)

�2vi is the variance of the subband signalvi, and c is a constant
determined by the signal distribution. Now the 2-channel
filter bank of fig. 1 has the equivalent representation of fig.
2, with the 2� 2 operators E(z�1) and R(z�1) LTI.
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Figure 2: Polyphase Representation

Orthonormality reduces to the requirement that
R(z�1) = E�1(z�1) and for all !

E0(ej!)E(e�j!) = R0(ej!)R(e�j!) = I: (5)

Under these conditions given a set of vi(k), the mean
square distortion at the output is minimized if for all i; j,
2�2b0�2v0 = 2�2b1�2v2 . In this case the quantity to be mini-
mized becomes

JSBC = �2v0�
2
v1
: (6)

Vaidyanathan, [6], provides necessary and sufficient con-
ditions under which (6) is a minimum. The condition has
two parts. First it is necessary that the subband signals

be mutually decorrelated: i.e. for all i 6= j, and k; l,
E[vi(k)vj(l)] = 0. If one defines the subband signal vector
v(k) = [v0(k); v1(k)]0 and its power spectral desity (PSD)
matrix as Sv(!), then this decorrelation entails that Sv(!)
be diagonal. This however doesn’t by itself suffice for opti-
mality. If one expresses

Sv(!) = �(!) = diag f�0(!); �1(!)g (7)

then optimality is ensured if the �i(!) obey a consistent
magnitude ordering at each frequency, e.g.

�0(!) � �1(!) for all !; (8)

or the reverse. This is simply an energy compaction condi-
tion. Call the vector of inputs to E(z�1), in fig. 2, �x and its
PSD matrix S�x(!). Then one can write

Sv(!) = E(e�j!)S�x(!)E
0(ej!): (9)

Since (5) holds, the �i(!) are the eigenvalues of S�x(!).

3. PROBLEM FORMULATION

We now address the case where x(k) is WSCS with period
N, and Hi(k; z�1) and Fi(k; z�1) are N -periodic. In this
Section we: (i) give a quantizer noise model; (ii) define a
measure for the output distortion; (iii) give an optimum bit
allocation scheme; and (iv) subject to optimum bit alloca-
tion, extract a precise mathematical optimization problem.
Clearly, the subband signals are themselves WSCS with pe-
riod N , i.e.

�2vi(k) = �2vi(k +N):

Extending [6], we will assume that the quantizers are mod-
eled by additive zero mean noise sources, independent of
the vi(k) with variances of the form

�2qi(k) = c2�2bi(k)�2vi(k): (10)

Under (1) these are N-periodic. Even when the analysis and
synthesis filters are time varying the polyphase representa-
tion depicted in fig. 2 still applies [9]. In this case the 2� 2
operators E(k; z�1) and R(k; z�1) are N-periodic. Further
the arrangement between the decimators and the quantiz-
ers can be replaced by the 2N � 2N blocked LTI operator
~E(z�1) depicted in fig. 3. Its input and output, the 2N � 1
vectors ~x(k) and ~v(k), are the respective blocked versions of
the input and output to E(k; z�1) in fig. 2. Notice the order
in which the output samples of vi(k) appear in ~v(k): i.e. the
time indices of the appearances of v1(k) are in reverse order
to those of v0(k).

~v(k) = [v0(Nk); v0(Nk + 1); � � � ; v0(Nk +N � 1);

v1(Nk +N � 1); � � � ; v1(Nk)]0 (11)
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Figure 3: Blocked Analysis Bank

This arrangement simplifies the subsequent notation.
When x(k) is WSCS with period N , both ~v(k) and ~x(k)

are WSS with PSD matrices S~v(!) and S~x(!) respectively.
Note that S~x(!) can be constructed from the periodic auto-
correlation, Rx(k; l), and will be assumed to be available.
Denote ~R(z�1) to be the 2N�2N LTI operator representing
the blocked version of the synthesis side of fig. 2.

Under orthonormality ~R(z�1) = ~E�1(z�1) and

~E0(ej!) ~E(e�j!) = ~R0(ej!) ~R(e�j!) = I: (12)

Clearly both x̂(k) and q̂(k) = x̂(k) � x(k) are also
WSCS with period N . Thus we propose to minimize the
average variance of q̂(k), i.e.

1

N

N�1X
i=0

�2q̂(i):

Because of (12) and (10), this in turn equals

c

2N

N�1X
k=0

�
2�2b0(k)�2v0(k) + 2�2b1(k)�2v1(k)

�
: (13)

Since the arithmetic mean is lower bounded by the geo-
metric mean with the bound achieved under equality of the
elements, subject to (2), (13) is minimized if at each k

2�2b0(k)�2v0(k) = 2�2b1(k)�2v1(k): (14)

This is the optimum bit allocation scheme. Under (14) the
minimization of (13) is equivalent to the minimization of

JSBC =
N�1X
j=0

q
�2v0(j)�

2
v1
(j): (15)

In (15) the first output of ~E(z�1) (fig. 3), is paired with the
last the second with the second last, etc.. Hence we have the
following precise mathematical problem.

Problem 1 Consider the 2N�2N system ~E(z�1)with WSS
input vector ~x(k)with positive definite Hermitian symmetric
PSD matrix S~x(!). Suppose ~v(k) in (11) is the output of
~E(z�1). Find ~E(z�1) such that (15) is minimized subject
to (12).

The difference between the WSS case considered in [6]
and the WSCS case, is evident. Whereas in [6] one min-
imizes the product of variances, (6), in this case it is the
sum of square root of 2-products that must be minimized.
The difference can be traced to the fact that while in the
WSS case there is only one bit budget to be satisfied, in the
N-periodic WSCS case N bit budgets must be met (2).

4. THE MAIN RESULT

In this Section we provide the solution to Problem 1. Though
we will not prove the main result we will give a key inter-
mediate Lemma that illustrates the approach taken in the
proof. This Lemma employs the notion of majorization,
[10] described below.

Definition 1 Consider two sequence of numbers h =
fhij1 � i � ng and g = fgij1 � i � ng with hi � hi+1
and gi � gi+1. Then we say that g majorizes h, i.e. h � g
if

lX
i=1

hi �
lX

i=1

gi; 1 � l � n (16)

with equality at l = n.

An important fact concerning majorization is the following,
[10]:

Fact 1 The diagonal elements of a positive definite Hermi-
tian matrix are majorized by its eigenvalues.

Since from (9) the eigenvalues of Sv(!) are the same as
those of S�x(!), in the WSS case the normalized integral of
the diagonal elements of all achievableSv(!), and hence all
achievable subband variances, are majorized by the normal-
ized integrals of �i(!) in (8).

Also, if all elements of h and g are nonnegative, h � g
implies that, [10],

nY
i=1

hi �
nY
i=1

gi: (17)

This is effectively a proof of [6]. In the WSCS case we
are not concerned with products of diagonal elements of
the normalized integral of S~v(!) but sum of square root of
products. Thus, (17) is of little value. Lemma 1 however,
proves that a result comparable to (17) is possible.



Lemma 1 Consider two sequences A = fa1; � � � ; a2Ng
and B = fb1; � � � ; b2Ng. Assume ai � ai+1 > 0 and
bi � bi+1 > 0 and A � B. Consider a pair of
disjoint partitions fi1; i2; � � � ; iNg and fl1; l2; � � � ; lNg of
f1; 2; � � � ; 2Ng. Then

NX
n=1

p
ainaln �

NX
n=1

p
aia2N�i+1

�
NX
n=1

p
bib2N�i+1:

Further equality holds in the second inequality iff A = B.

This result states two facts. First that among all possible
sums of square root of products the minimum is attained
by pairing the largest with the smallest, the second largest
with the second smallest, etc.. Second, the sequence that
majorizes the other yields a smaller value for this quantity.
Now the main result:

Theorem 1 Consider problem 1 and all quantities defined
in its statement. Then optimality is attained only if the PSD
matrix S~v(!) is diagonal. Further suppose that,

S~x(!) = ~U(e�j!)~�(!) ~U 0(ej!)

~U(e�j!) unitary at all !, and

~�(!) = diag f~�0(!); � � � :~�2N�1(!)g
obeying at all !

~�i(!) � ~�i+1(!) > 0: (18)

Then ~E(z�1) = ~U 0(ej!) is one optimizing solution. In this
case S~v(!) = ~�(!).

Of course the Hi(k; z�1) and Fi(k; z�1) can be obtained
by unblocking ~E(z�1) and ~E�1(z�1). There are appealing
parallels to the WSS case. The diagonal nature of S~v(!)
entails the complete mutual decorrelation of the blocked
subband signals. Further, (18) parallels (8). However, in
addition the blocked subband signals must be paired in an
appropriate way. The largest energy signal must be paired
with the smallest, the second largest with the second small-
est etc. The solution given in Theorem 1 also reflects an
energy compaction condition as all samples of the periodic
variance of v0(k) dominate those of v1(k). Yet the situation
now is more complicated. For example an arrangement in
which �2N�2 and �2 are the respective PSD’s of v0(Nk)
and v1(Nk), but �0 and �2N�1 are the respective PSD’s of
v0(Nk + 1) and v1(Nk + 1) is permissible. Nevertheless,
it is possible to show that the optimizing design can be ef-
fected using a class of periodic optimal compaction filters,
see [8] for details.

5. CONCLUSION

We have given conditions for the optimal orthonormal sub-
band coding of WSCS signals with period N, when the coder
is a 2-channel uniform filter bank with N-periodic analysis
and synthesis filters. A PDBA scheme involving N-periodic
bit allocation is employed. An average variance condition is
used to measure the output distortion. The optimality con-
ditions parallel those for the WSS case in that the blocked
subband signals must be decorrelated and the subband PSD’s
must obey an ordering. Unlike the WSS case some addi-
tional conditions on this ordering are required.
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