
Client Computer Server ComputerSocket No.1

Socket No.2

Internet Server ComputerClient Computer

SPEECH RECOGNITION OVER THE INTERNET USING JAVA

Zhemin Tu and Philipos C. Loizou

Department of Applied Science
University of Arkansas at Little Rock

Little Rock, AR 72204
zxtu@ualr.edu, loizou@ualr.edu -- http://giles.ualr.edu/asd/speech

ABSTRACT

A speech recognition system based on an Internet client-
server model is presented in this paper. A Java applet
records the voice at the client computer, sends the
recorded speech file over the Internet, and the server
computer recognizes the speech and displays the
recognized text back to the user. Using this structure, an
isolated digit recognition application was realized.

1. INTRODUCTION

With the explosive growth of the Internet technology, both
speech researchers and computer software engineers have
been putting a great deal of effort to integrate speech
functions into Internet applications [1-3]. For simple
applications, voice playback and voice recording functions
may be sufficient. For complex applications, however,
speech recognition and synthesis functions are needed.

 This paper presents a client-server based, speech
recognition system. In this system, a user can use a World
Wide Web (WWW) browser such as the Netscape
Communicator to do speech recognition by visiting a
particular web site. The architecture of the system is shown
in Figure 1. In the client computer, a microphone is needed
to record speech. Since Sun Microsystems’ Java
Development Kit (JDK) currently does not support voice
recording, we had to use a third party product for
recording. A local process is responsible for recording the
speech voice and transmitting the speech data to the applet,
which is downloaded and run by the web browser of the
client computer. The server computer contains a web
server where a WWW page is held, a speech recognition
server, who is responsible for speech recognition
management, and a speech recognizer that recognizes
speech.

No coding method [1] was used to compress the speech
data before transmission over the Internet, since we felt
that a single speech utterance would not be a heavy burden
on the network.

Figure 1. Block diagram of the client-server based
speech recognition system. The left block
represents the structure of the client computer,
while the right block represents the structure of the
server computer. The Internet connects the server
and the client computer. Two sockets are used for
web browser and speech recognition, respectively.

The remainder of this paper is organized as follows. In
Section 2 we review alternative system structures for the
implementation of speech-enabled applications over the
WWW. In Section 3, we describe the implementation of
our JAVA-based speech recognition system. In Section 4
we present some of our experimental results, and we
conclude in Section 5.

2. System Structures

There are several architectures for incorporating speech
applications on the WWW [1], two of which are reviewed
here.

2.1 Stand-alone Structure

In the stand-alone architecture, the client computer needs a
copy of the stand-alone program, which is used to record
voice, send voice data and display the recognized text.
This stand-alone program is also responsible for showing
the recognition results to users through its own user-
machine interface.

Web Browser

Applet

Web Server

Speech
Recognition

Server

Speech
Recognizer

Local Process
For

Voice Recording

Microphone

The benefit of using a stand-alone model is that both
hardware and software resources of the client computer are
free to be used. This is convenient for the client program to
control a soundcard. Given that currently there is no JDK
supporting voice recording, the above benefit will be
attractive until Sun Microsystems, Inc. puts forward its new
JDK with voice recording capability.

The stand-alone model has also disadvantages.

First, there is the upgrading problem. The users will need
to keep downloading the latest version of the software, or
need to change the settings frequently. Researchers are
developing speech recognition algorithms all the time.
When it is time to upgrade the speech recognition server, it
is very likely that the client software will also need
upgrading.

Second, there is the portability problem. People who are
using different computer platforms have to download
different kind of client software, and have to set up the
software by themselves. The portability problem also costs
the system developer much more money because he has to
provide several sets of software for different platform
users.

2.2 Browser-embedded Structure

Alternatively, we can realize the client-server based speech
recognition system using a browser-embedded model. In
this system, the user can use a WWW browser to access
the speech recognition server, and then perform the speech
recognition task. The Java applet is responsible for
recording voice, transferring speech data, and displaying
the recognized text.

Benefits of the browser-embedded model include:

• The system is easily upgradable. No extra work is
needed from the users. If the system designer wants to
improve the system performance, he is free to upgrade
the speech recognition program. If the client program
needs to be changed, then the system designer revises
the applet, and puts the revised applet to the web
server. Next time the users visit the web site through
their web browsers, the browsers will download the
new applet, and execute it. From the users’ point of
view nothing has changed in the system except for the
interface.

• The system is portable. Java language is portable
across different computer platforms. Therefore the
software provider does not need to provide different
software to different platform users. All the provider
needs is to put the Java applet, which acts as the client
program, into the web server directory. Compared

with the stand-alone model, the browser embedded
model is more economical in practice.

The main disadvantage of the browser embedded model is
that currently the Java applets do not support voice
recording. This is mostly because of security reasons. For
security reasons, the applet can not run a program located
in a local machine, or control a hardware device such as
the soundcard. Imagine that when a user browses a web
site, a hidden applet can turn on the user’s microphone and
record the user’s conversation with other people in the
same office. There is a market demand, however, for the
voice recording function in applets. More and more
network voice systems are likely to be moved into web
browsers. Those voice systems will include network voice
communication packages, remote production applications,
and the system presented in this paper.

The browser-embedded model is also easily scaled in the
sense that the system hardware or software can be
extended without any restrictions. This is necessary for the
server-client based speech recognition system because the
database which contains the HMM models of all the words
in the vocabulary may need to be upgraded.

Given the above advantages of the browser-embedded
structure, we decided to adopt it for the server-client based
speech recognition system.

3. Implementation of JAVA-based speech recognition
system

The block diagram for the whole system is shown in Figure
1. In the client computer, a microphone is needed to record
speech. A local process is responsible for recording speech
and transmitting the speech data to the applet, which is
downloaded and run by the web browser of the client
computer. The server computer contains a web server
where a WWW page is held, a speech recognition server
who is responsible for speech recognition management,
and a speech recognizer that recognizes speech. The
speech recognition server invokes the speech recognizer.

Two TCP/IP sockets are used in this system. One of them
is responsible for web browsing. The socket is a
connection between the web browser, which is located in a
client computer, and the web server. This socket is only
responsible for transmitting data related to web browsing.
The other socket is a connection between the applet and
the speech recognition server. This socket is responsible
for transmitting speech data from the applet to the speech
recognition server, and displaying the recognized text back
from the speech recognition server to the applet.

For security reasons, Java requires that the applet can only
open a connection back to the same IP address where the
web server stays. This means that the speech recognition

server has to be at the same IP address as the web server.
More realistically, they have to be on the same computer.

As shown in Figure 1, the server-client based speech
recognition system can be divided into several
components. On the client side, there is the web browser,
the applet and the voice-recording process. On the server
side, there is the web server, the speech recognition server
and the speech recognizer.

Among these components, the web browser, the voice-
recording processes and the web server can be found from
commercial products. The components that had to be
implemented by the system designer were the speech
recognition server, the speech recognizer and the Java
applet.

3.1 The Java Applet

 The Java applet provides the interface for speech
recognition users, records the users’ voice, transmits
speech data to the speech recognition server, and displays
the recognized text to the users (see Figure 2).

Figure 2. The user interface of the Java-based speech
recognition system.

Since there is currently no JDK version supporting
applet voice recording, a third party program from
Scrawl, Inc., which can be downloaded from
http://www.scrawl.com/store/, had to be used to
perform sound recording. The third party program is

invoked by the applet when sound recording is needed.
The applet was designed to be simple so that it can be
run on most client computers. Once the applet begins to
run, it sends its request to a certain port located in the
server computer in order to establish a socket. The
recognition server is monitoring the port, and after that,
the server and the client establish a connection to each
other.

3.2 The Speech Recognition Server

The speech recognition server is running on the host
computer all the time, just like the web server. As soon as
the recognition server is started, a socket is created. The
recognition server keeps listening to the socket until a
client requests to connect to the server.

Once a user visits the speech recognition web page through
a web browser, the web browser downloads the applet
contained in the web server and runs it. The applet then
requests to create a socket between the speech recognition
server and itself. After the recognition server receives the
request, it generates a new thread, in which a new socket is
created. Then, the socket takes care of data communication
between the recognition server and the client.

There are a few protocols between the recognition server
and the applet that need to be maintained. For example,
before an applet transmits the speech data to the server, it
has to tell the server how much data is going to be
transmitted. This is important because otherwise the server
would not know where the end of the speech data is. The
server keeps reading the socket, and blocks it.

The speech recognition server is also responsible for
invoking the speech recognizer after it receives all the
speech data and stores it to the server’s hard disk. This is
realized by a system call. The speech recognition server
and the speech recognition processes communicate with
each other by reading and writing files in the server’s local
hard disks.

3.3 The Speech Recognizer

To demonstrate the Java-based speech recognition system,
we used a small-vocabulary, isolated word recognition
task, and in particular the digit recognition task. The core
of the recognizer was based on continuous density HMMs.

The Texas Instrument’s speaker-independent digits
(TIDIGITS) database was used to train whole-word
HMMs. A total of 50 speakers was used for training. Each
speaker said the digits 0-9 and “oh” twice. Unlike the
TIMIT database, the TIDIGITS database did not provide
phonetic transcriptions for each digit. Therefore, the digits
had to be manually segmented in our lab. A semi-
automatic program was used to segment the TIDIGITS

speech database. An endpoint detector first segmented the
speech data automatically, and then displayed the
segmentation. If the segmentation was not correct, the user
indicated the correct endpoints using a mouse.

Mel-frequency cepstrum coefficients (MFCC) were used
for features. Speech was first segmented into 25.6-msec
frames and then pre-emphasized with a first order FIR
filter of the form (1-0.97z-1). A Hamming window was
applied every 10 msecs, with a 15.6-msec overlap between
consecutive frames. In each frame, 14 mel-frequency
cepstrum coefficients were computed by applying 24
triangular filters on the FFT magnitude spectrum, and then
computing the discrete cosine transform of the log-
filterbank energies. A 30th dimension feature vector
consisting of 14 MFCC coefficients, 14 delta-MFCC
coefficients, normalized energy and delta-energy was used
to train the HMMs.

The training procedure consisted of 10 iterations of the
segmental k-means algorithm [4] over all training data in
order to get initial estimates for the word models, followed
by five iterations of the Baum-Welch algorithm. A six-state
left-to-right continuous HMM with 4 mixtures was used
for each of the 11 digits. Diagonal covariance matrices
were used for all models. Recognition was carried out
using the Viterbi algorithm.

The training was done first on a Unix workstation, and the
HMM models were then transferred to the server
computer. The only programs running on the server
computer were the feature extraction program and the
Viterbi recognizer.

4. System Performance

The speech recognizer was first tested (off-line) on the
TIDIGITS database. Digits produced by twenty additional
speakers from the TIDIGITS database, not included in
training, were used for testing. The word error rate was
2%. The speech recognizer was also tested on 10 different
speakers (from our lab) who used the Java-based speech
recognition system. The resulting word error rate was 4%.
The fact that the error rate of the Java-based system was
higher than the error rate obtained using digits from the
TIDIGITS was not surprising given the differences in
recording conditions. More research needs to be done to
make the Java-based system more robust to different
microphones and different background environments.

5. SUMMARY

A Java-based speech recognition system based on a client-
server model was presented. The Java applet records the
voice at the client computer, sends the recorded speech file

over the Internet, and the server computer recognizes the
speech and displays the recognized text back to the user.
The Java applet can be accessed from our web site at:
http://giles.ualr.edu/asd/speech.

6. ACKNOWELEDGMENTS

This research was partly supported by a grant from the
Arkansas Science and Technology Authority.

7. REFERENCES

[1] V. Digalakis, L. Neumeyer and M. Perakakis
“ Quantization of Cepstral Parameters for Speech
Recognition Over the World Wide Web,”
Proceedings ICASSP 98, pp. 989-992, 1998.

[2] D. Goddeau, W. Goldenthal and C. Weikart,
“Deploying speech applications over the Web,” Proc.
Eurospeech, pp. 685-688, September 1997.

[3] S. Bayer, “Embedding speech in Web interfaces,”
Proc. ICSLP, pp. 1684-1687, October 1996.

[4] L. Rabiner and B. Juang, Fundamentals of Speech
Recognition, Prentice-Hall, 1993.

