
FPGA Implementation of a Nonlinear Two
Dimensional Fuzzy Filter

Justin G. R. Delva∗ , Ali M. Reza∗ , and Robert D. Turney+

+ CORE Solutions Group, Xilinx
San Jose, CA 95124-3450, USA

∗ Department of Electrical Engineering and Computer Science, UWM
Milwaukee, Wisconsin 53201-0784, USA

ABSTRACT
Nonlinear filtering has found many practical applications in
digital signal and image processing. The computation complexity
of these filtering algorithms make them difficult for real-time
hardware implementation. One of these nonlinear filters, which
is based on fuzzy classification of each pixel to subgroups of its
neighboring pixels, is considered here for hardware
implementation. The criteria of this filter are based on the local
context which form the basis of the fuzzy rule. The filtering
algorithm is slightly modified for implementation into a Xilinx
Virtex series of FPGA for real-time processing of image
sequences. Implementation details and recommendations for
further improvement are discussed. Result of a simulation
example from the proposed hardware implementation is also
presented.

I. Introduction
Noise filtering is an important part of processing and restoring a
real image sequence[1]. The noise statistics are usually unknown
and differs from one application to another. The more common
approach in modeling the noise is to assume that it has Gaussian
distribution in addition to some low percentage of additive
impulsive noise (pepper and salt noise)[2]. The filtering involves
the removal or reduction of impulsive noise along with the
Gaussian noise while preserving or enhancing edges[3]. The
edges give the image the appearance depth and sharpness. A loss
of edges makes the image appear blurred or unfocused. However,
noise smoothing and edge enhancement are traditionally
conflicting tasks. Since most noise filtering behave like a low-
pass filter, the blurring of edges and loss of detail seems a natural
consequence. Techniques to remedy this inherent conflict often
encompass generation of new noise due to enhancement[3].

 A better solution to a seemingly blind approach to noise
reduction is to process the image by its individual pixels based
upon the trends or appearance of its immediate neighbors. These
trends can be defined as statistical characteristics of the
neighboring pixels or they can be based on a fuzzy classification
of each pixel to subgroups of its neighboring pixels[4]. This
approach to filtering has proven to be a better solution in dealing
with the problem of preserving edges[5]. A pixel that is near an
edge will ideally be combined with the neighboring pixels that
lie on the same side of the edge. This requires some form of
morphological classification of the local pixels. The method
proposed in [5] is based on applying different sub-grouping of
pixels within a 2-D moving window. First the mean of each sub-
group is estimated based on a robust estimator; i.e. median. Then
the center pixel is classified to the sub-groups by using a fuzzy

classifier[6]. This algorithm can utilize different morphological
structure[6] to capture different patterns and edge characteristics
in an image.

 In this paper a nonlinear fuzzy filter, originally introduced in
[5], is proposed for hardware implementation. The proposed
fuzzy filter is tailored for implementation into a Xilinx Virtex
series of FPGA for real-time image sequence (video) restoration.
The proposed implementation is developed only for the most
likely morphology for grouping the neighboring pixels.
Extension to other morphological structure is straightforward.

m1

m2 m3

m4

m0

Figure 1: The most likely morphological structure that can be
used for all image classes.

II. Nonlinear Fuzzy Filter
The filter proposed in [5] is based on morphological operators
introduced in [6]. In this approach, morphologies of square odd
sized windows are used. The idea is to find the best geometrical
structure for dividing the moving window into four subgroups
such that each subgroup is almost totally inside a homogenous
area of the image. The best structure depends on the local
structure of the edges inside the window. Although the
morphology of the best structure for subgroups vary from pixel
to pixel, there are only limited number of morphologies that are
statistically more likely than any other structures. Based on
extensive simulations, it is shown that the most likely structure in
all images is as shown in Figure 1. For other likely structures and
further discussions, the readers are referred to [5].

The overall procedure is as follows: Different morphological
structures are applied to each pixel. In each case fuzzy
memberships of the center pixel with respect to the four
subgroups are calculated. The morphology with the widest
variation among its subgroup fuzzy memberships is chosen as the
best fit to the local characteristics of the image. Then based on
the available fuzzy memberships and the robust estimates of the
means of the subgroups for the selected morphology, the center

pixel is substituted (the filter output is calculated) by the fuzzy
average of the subgroups means[5]. This algorithm is well suited
for multi processor hardware implementation or FPGA
implementation as discussed in the following.

In this paper, implementation of only a single morphological
structure is discussed. Expansion to other morphologies is
straightforward. The selected window that is used here is the
most common morphology found in [5] and is shown in Figure 1.
By moving the proposed window, one pixel at a time, over the
entire image, the fuzzy classification for each individual pixel is
evaluated. At each location, the median of each subgroup is
calculated as an estimate of the mean of that particular subgroup.
Then based on the value of the center pixel, the fuzzy
membership of that pixel with respect to each subgroup is
calculated. Finally the filter output corresponding to the center
pixel is calculated based on fuzzy averaging of the subgroup
medians.

Let im represent the median of the i-th subgroup, where i is

taking the values of 1,2,3, and 4. If the center pixel is represented
by 0m , then the membership of the center pixel with respect to

the i-th subgroup is calculated by

εσ +−−=))2/()(exp(22
0 ii mmw (1)

where 2σ is the user defined positive constant and ε is a small
positive number. The filter output is calculated by using a
weighted average of the subgroups means. The weights used in
this case are the fuzzy membership functions obtained from
Equation (1). The resultant equation for the filter output at each
pixel is

∑

∑
=

i
i

i
ii

w

mw

y (2)

In both Equations (1) and (2) the subscript i is changing from 1
to 4.

III. FPGA Implementation
 Hardware implementation of the nonlinear fuzzy filtering
algorithm is based on the present day FPGA technology. In this
implementation, the objective is to demonstrate how a very
complex image processing algorithm can be implemented for
real-time image sequence (video) processing.
 The Virtex by Xilinx was used as the final target of the design.
Figure 2 shows the block diagram of the design. Not shown in
Figure 2 is a line-buffering scheme used to collect the five lines
necessary for the window of Figure 1. Hline1, Hline2, Hline3
and Hline4 are the four twelve bit outputs of the line buffer.
These Hlines are then fed into a Mask buffer that dissects the 5x5
window into the 4 sub-windows where each contains six pixels.
After the Mask buffer, the median calculation is performed on all
four sets of six pixel values. This produces the four medians m1,
m2, m3 and m4. The medians and the m0 point are then used for
calculating the membership functions in the Fuzzy Calc section.

The last two stages of the block diagram, consists of the
summing of the weighted values, followed by their division by
the sum of the weights.

Figure 2: Fuzzy Filter chip layout

Robust Estimator
To perform the median calculation, the pixels in each block must
be first sorted in increasing order. After sorting, the median of
the six pixels in each block is given by

2
)4()3(

)(0

ff
fmedianm

+== (3)

where f is the sorted sequence of pixels. A merge-sort network
[8] is used to sort each block. Merge-sort networks are highly
connected structures that are able to sort a sequence S={s1, s2, s3,
…, sn} where n is a power of 2. A complete example is illustrated
in Figure 3 for the sequence S={8, 4, 7, 2, 1, 5, 6, 3}.

Figure 3: Sorting network for sequence of size eight.

In Figure 3, each cell of the merge-sort network consists of a
comparator that outputs the largest and the smallest of the two
input values as shown in figure 4.

Figure 4: A merge-sort cell

Finding the median from the outputs of the merge-sort network is
simply a matter of finding the average of the fourth and fifth
output values. For the proposed fuzzy filter, the merge-sort
network has to be modified for the six pixel-values (not eight)
that need to be sorted. A simple solution is to always assign to
zeros the first two values of the pre-sorted sequence. Thus at the

output of the merge-sort network, the inserted zeros will always
be the first two output values for any sequence; consequently, the
two values needed to compute the median will now be the 5’th
and 6’th output. A modified merge-sort network is in order and
its architecture is shown in Figure 5.

Figure 5: Modified sorting network

The new network is a trimmed version of the full scale network
of Figure 3. Further simplification of this network can be
envisioned, starting from the comparator whose inputs are
hardcoded to zeros. Three cells constitute the building block for
the new sorting network: the comparator of Figure 4, the min and
max cells shown respectively in Figure 6 and Figure 7.

Figure 6: min comparator

Figure 7: max comparator

Fuzzy Calculation
After finding the medians of each of the sub-windows of Figure
1, the calculation of the four sum terms in both the numerator
and the denominator of Equation (2) is executed in parallel in
each sub-window. To generate the summing terms in the
numerator and denominator of Equation (2), the wi values must
be computed first using Equation (1), then calculation of the four
term follows. Figure 8 shows the datapath for the generation of
wimi and wi. A subtractor is used, followed by a look-up-table for
the computation of the exp(.) function. All components used

Figure 8: datapth to compute wimI and wi.

in the design are readily available in Xilinx’s Coregen. This
application contains important building blocks for DSP
designers. The exp(.) block is a look-up-table (ROM) that uses as
addressing the difference m0 – mi. The contents of the look-up-
table are appropriately scaled for generating good precision.
Redundancy in the look-up-table is one drawback in using
exponential functions. The redundant terms occur most often for
high pixel values. A simple approach to this problem is to first
determine the threshold where the redundancy becomes costly,
then to use a ROM for values below the threshold (since most
values will be below threshold). For values after the threshold, a
logic scheme can be used to generate the few remaining terms.
 Concerns may arise regarding the size of the engine in Figure 8.
The four Fuzz Calc blocks used in Figure 2 could be replaced by
a single block that would be time-shared. This scheme would
reduce the number of logic cells but falls short of achieving the
minimum throughput for video. Another approach is to use
Distributed Arithmetic [9] [10] which may use less logic cells.
 After the summing terms of Equation (2) are generated, the next
obvious step is to sum the values in the numerator and then the
denominator. Afterwards, a divider is used to give the final
output. The output is trimmed to twelve bits by removing the
binary decimal places.

Design Performance
 The system can easily operate at a 66 Mhz clock enabling
1024x1024 60 Frames/s operation. System clock rates of 80
Mhz and 100 Mhz can also be achieved for more aggressive
system bandwidth requirements. Hardware resources to perform
the data path of Figure 2 are approximately 5048 Logic Cells
allowing for use of a Virtex family XCV300 by Xilinx.

IV. Simulation
The type of noise used in this simulation is a combination of
white Gaussian noise along with impulsive noise known as salt
and pepper noise. Images were tested with equal amounts of salt
noise (gray level white) and pepper noise (gray level black). The
locations of these impulsive noises were randomly selected.
 In Figure 9, the Lena image is contaminated with white
Gaussian noise to achieve SNR=10db along with 20% salt and
pepper noise. The processed image is represented in Figure 10

for which the parameter 2σ is set equal to 16 and the moving
window is 5x5. Careful analysis of the fuzzy filter and further
simulations reveal that the window size of 5x5 is performing
very well for most general images. Similarly, it is found that the

value of 16 for parameter 2σ in Equation (1) is producing good
results.

V. Conclusion
In this work it is shown that present day FPGA technology can
be fully explored for implementation of more complex digital
image processing algorithms when real-time video processing is
necessary. This fact is demonstrated by realization of a very
complex nonlinear fuzzy filtering algorithm for a real-time video
processing. The fuzzy rule based enhancement is an attractive
solution to removing noise while preserving the integrity of
edges as much as possible. One past drawback of this type of
algorithm was that they required extensive computation which
most DSP processors can not easily perform.. With FPGA
technology the advantage of highly parallel and pipelined

structures enable image-processing function without the
computational overhead found in DSP processors.

Figure 9: Lena image contaminated with Gaussian noise to
achieve SNR of 10 and added impulsive (pepper and salt noise)
noise of 20%.

Figure 10: Processed image via the proposed hardware
implementation.

Bibliography
[1] Anil K. Jain, Fundamentals of Digital Image Processing,

Prentice Hall, NJ, 1989.
[2] R. Haddad and T, Rarsons Digital Signal Processing,

Theory, Applications and Hardware, Computer Science
Press, NY, 1991.

[3] D. Marr and E Hildreth, Theory of edge detection.
Proceedings of the Royal Society, B 207:187-217,1980.

[4] H. J. Zimmerman and P. Zysno, “Quantifying vagueness
in decision models,” European J. Operational Res., vol.
22, pp. 148-158, 1985.

[5] Maged S. Riad, “Image Processing Using Fuzzy
Clustering Algorithms,” M.S. Thesis, Electrical

Engineering, University of Wisconsin-Milwaukee, May
1995.

[6] R. Krishnapuram and M. Keller, “A Possibilistic
Approach to Clustering,” IEEE Trans. on Fuzzy
Sys., vol. 1, No. 2, pp. 98-110, 1993.

[7] J. Serra and L. Vincent, “An overview of
morphological filtering,” Circuit, Systems and
Signal Processing, vol. 11, pp. 47-108, 1992.

[8] Selim G. Aki, The Design and Analysis of parallel
Algorithms, Prentice Hall 1989

[9] Les Mintzer, “Large FFT’s in a Single FPGA,”
ICSPAT Conference, pp. 895-899, 1996.

[10] Xilinx Application Note, “The role of distributed
Arithmetic in FPGA Based Signal Processing,”
1996.

