
FAST IMPLEMENTATION OF ORTHOGONAL WAVELET FILTERBANKS USING
FIELD-PROGRAMMABLE LOGIC

U. Meyer-Baese, J. Buros, W. Trautmann, and F. Taylor

High Speed Digital Architecture Laboratory, University of Florida
Gainesville 32611-6130, U.S.

e-mail: fuwe,buros,wtraut,fjtg@alpha.ee.ufl.edu

ABSTRACT

Field-Programmable Logic (FPL) is on the verge of revolutionizing
digital signal processing (DSP) in the manner that programmable
DSP microprocessors did nearly two decades ago. While FPL den-
sities and performance have steadily improved to the point where
some DSP solutions can be integrated into a single FPL chip, they
still have limited the use in high-precision high-bandwidth appli-
cations. In this paper it is shown that alternative implementation
strategies can be found which overcome the precision/bandwidth
barrier. The design of Daubechies length 4 and 8 filter is presented
to compare FPL and programmable DSP solutions.

1. INTRODUCTION

FPLs appear in two forms, field programmable gate arrays (FP-
GAs) and complex programmable logic devices (CPLDs). FPGAs
are fine grain devices consisting of small logic elements (LE) (e.g.,
Xilinx XC4000) and various different routing canals (short, local,
and long-lines). CPLDs have larger logic blocks and fast busses
connecting these array blocks (e.g., Altera FLEX [1]). The histor-
ical advantage of FPLs has been their “in circuit programmability”
and support of “rapid prototyping.” FPLs have been promoted in
custom computing machine (CCMs) applications where they have
been reported to achieve speed-up-factors ranging from 10-1000
compared with conventional workstations [2, Table 1]. FPLs pro-
vide DSP arithmetic support with fast carry chains (Xilinx XC4000,
Altera FLEX) which are used to implement multiply-accumulates
(MACs) at relatively high speeds. The designs using FPL typically
exploited latent:

� parallelism: implementing multiple MAC calls

� efficiency: zero product-terms are removed

� pipelining: each LE has a register, therefore pipeline re-
quires no additional resources

FPLs, nevertheless, currently have limited applicability in high-
bandwidth high-precision applications. The geometric increase in
area requirements for constant-speed arithmetic is a very challeng-
ing FPL design issue. Since DSP is acknowledgedto be arithmetic-
intensive, this presents an adoption barrier.

An emerging arithmetic-intensive DSP area is wavelet signal
processing. In contrast to Fourier transforms, wavelets provide a
far more robust representation of a dynamically changing signal or
image. The orthogonal wavelet filter, developed by I. Daubechies,

U. Meyer-Baese was supported by an European Space Agency
fellowship.

z-1

+z-1

+

+

a[0]a[1]

G(z)

-
+z-1

+z-1

a[L-2]

+

x[n]

H(z)

a[L-1]

-

Figure 1: Orthogonal two channel filter bank in transporsed FIR
form.

has motivated many contemporary wavelet-centric applications.
For instance, the European Space Agency (ESA) distributes a col-
lection of compress (60:1, without visible loss) satellite images on
two CD-ROMs with 13K images covering a full year. ESA uses
a maximum error compression scheme [3] whose most computa-
tional intensive component consists of a three stage DWT with
Daubechies length 4 filter. The next generation of satellites the
images size increases to 10K�20K pixel, which demands high
performance DWT hardware solutions. The ability to implement
such solutions using FPGAs, will offer the DSP community im-
portant new opportunities. This presumes, of course, that solutions
can be realized which meet exacting bandwidth and precision re-
quirements.

Formally, a Daubechies filter has compact support (finite length),
provides perfect reconstruction in a two channelfilter bank scheme,
and fulfills the conjugate quadrature filter (CQF) property, i.e.
H(z) = z�NG(�z�1): Using existing FPLs, the filter can be
realized in a “unwrapped” fashion, preferred in the transposed FIR
form to achieve maximum speed. In the two channel filter bank case
each filter can be realized using a polyphase decomposition, i.e.
H(z) = H0(z

2) + z�1H1(z
2); and G(z) = G0(z

2)+ z�1G1(z
2)

which increases the throughput by a factor two, see Figure 1. Fur-
ther evaluation shows that the multiplier in the transposed FIR
of a polyphase filter only has to be realized once since G1(z) =

z�N=2H0(z
�1) and G0(z) = �z�N=2H1(z

�1): For orthogonal
filters, this will result in more speed and savings of resources [4].
Filtering, using FFT methods, is preferred for filters of length 32
or larger [5], and, will therefore not be discussed here.

To compare different design options, a Daubechies length 4
and 8 FIR filter and two channel (synthesis) filter bank model is
used. Three different computer arithmetic unit design strategies
are considered. They are:

� Reduced Adder graph (RAG) - technique using a factored
canonical signed digit (CSD) code.

� Distributed arithmetic (DA) - concept for realizing a sum of
product.

� Residue Number System (RNS) - implementation using the
concept of parallel,small word length,high bandwidth chan-
nels.

In the following sections the comparisons are made. First, however,
we briefly describe the candidate FPL family and define some basic
DSP building blocks.

2. BASIC DSP BLOCKS

Each logic block (LB) of a Altera FLEX 10K devices contains 8
LEs where each LE provides a 23 � 1 table and fast carry chain
support in an arithmetic mode [1]. A EPF10K250A devices has,
for example, 1520 LE blocks, 12160 LEs, and twenty 2K tables
(called embedded array block,EAB). For implementing high-speed
adders, it should be noted that LE tables are much slower (� 3ns)
than a fast carry chain (< 0:5ns). Therefore the “fast adders”
appearing in the literature [6], give a slower speed in FPLs than
that using a ripple carry architecture with fast carry chains. The
following table shows synthesis results (Altera optimization: 0
area/10 speed) for two’s complement adders and array multiplier
(i.e. Wallace tree) with a 4 pipeline stage delay data for 4ns devices
where speed is measured in mega operations per second, and the
number of required logic elements (LE).

ADD MUL
Bits 8 16 26 32 9 � 9 12�12
MSPS 137 73 51 45 71 69
LE 8 16 26 32 217 328

A naive wavelet filter bank design approach is to realize a FIR
filter by simply combining the building blocks of adder, multi-
plier and register. The following table shows estimated resource
requirements and speed of such a solution.

Type #LE Bits Speed [MHz]
DB4 928 20 43:5�

DB8 1883 21 43:5�

DWT4 988 20 43:5�

DWT8 2030 21 43:5�

The reduced speed comes from routing problems. Typical a
30-40% decrease in performance can be observed for larger devices
and designs, compared with the single building block in a smaller
device (see DA section).

3. REDUCED ADDER GRAPH TECHNIQUE

Canonical signed digit (CSD) coding is a well studied computer
arithmetic technique. In general, it can be assumed that an adder
and subtrator are of equal complexity. Furthermore, in 2’s comple-
ment and the CSD, 15 (decimal) can be coded as

1510 = 11112 = 1610 � 110 = 1000(�1)2 (1)

The integer 4510 = 1011012 has cost 3 (i.e. 3 adder are needed),
but 5 � 9 = (4 + 1)(8 + 1) has cost 2. There are 7 such integers
below 100, namely 45,51,75,85,90,93, and 99 with lower cost after

beeing factorized. In a filter bank realization a factorization of
the coefficients is even more attractive, because most often several
factors can be used in common. For instance, a halfbandfilter "F6"
from Goodman and Carey (non-zero coefficients 346,208,44,9)has
cost 9. Using the factor CSD code (a.k.a. RAG algorithms) reduced
that to 5. In general finding the optimal RAG is a NP hard problem
and heuristics must be applied. There are some obvious actions
possible, however, to reduce the effort. Specifically:

� Remove all factors which are power of 2, because they can
be accomplished by shift or hard-wiring.

� Realize all cost 1 coefficients.

� Using the cost 1 coefficients, start with the next coefficients
with minimal costs.

To simplify the algorithm it’s helpful to have an optimal CSD table
available [7, 8]. If we realize a Daubechies filter of length 8,
quantized to 10 bits (9 mantissa plus sign), then it follows that

n 0 1 2 3 4 5 6 7
h[n] 164 511 448 20 132 22 24 8
Cost 2 1 1 1 1 2 1 0

In a RAG algorithm, one can use the factor 3 two times, (i.e.
22 = (3 + 8)2 and 24 = 3 � 8); and therefore reduce the total cost
to 8. The following table shows the data for the DB length 8 filter
in CSD code and the two channel filter banks of length 4 and 8.

Type #LE Bits Speed [MHz]
DB8 946 21 81�

DWT4 364 20 44:2
DWT8 1992 21 81�

For the DB8 and DWT8 filter pipelined adders were used to speed
up the design, i.e. instead of a single 21 bit adder, three 7 bit
adder were used and additional pipeline registers added. But such
pipeline adders including input and output registers need significant
resources as it can be seen from the following table.

Bits #LE Speed [MHz]
9-15 39-69 135.1
16-22 93-135 118.9

4. DISTRIBUTED ARITHMETIC

The distributed arithmetic (DA) concept [9] is an alternative to
compute a “sum of product”

y =

N�1X
n=0

h[n]x[n] (2)

by combining all bits of the x[n] at a single position b to one word
according to

y =

N�1X
n=0

h[n]

B�1X
b=0

xb[n]2
b =

B�1X
b=0

N�1X
n=0

h[n]xb[n]| {z }
f(h;x)

: (3)

It should be noted that for DA with an iterative realization, the
latency depends on the number of bits B and not on the number
of coefficient N , as is the case for a general programmable DSP.
This basic principle can be speed up by computing several of the

+

X [0]B

2

0X [0]

1

X [0]

X [0]

+

+

Pipeline-Register optional

...

R
O

M
R

O
M

...

R
O

M

0
...

R
O

M

X [N-1]
...

B

2

1

2

2

21

2

B -

YX [N-1]

X [N-1]

X [N-1]

Figure 2: Maximum speed DA implementation.

f(h; x) in parallel. The fastest way is if all LUT are computed in
parallel, as shown in Figure 2.

The “fast” approach is limited by the available “fan in” of the
LUTs in FPLs to 4-8 TAP filter. For Altera Flex 10K we can use
the 4 input LE or the 28 � 8 EAB ROM tables. For a 2 channel
filter bank using DA the following observations are made:

1. A polyphase decomposition (or symmetry) reduces the ef-
fort essential to half the necessary fan in.

2. The CQF symmetry can not be utilized in DA designs.

3. The fastest pipelining can theoretical be achieved with LE
(ca. 130 MHz). EABs provide 86.2 MHz theoretical per-
formance.

The following table shows results for different DA designs. It
should be noted by combining 4 length 4 filter the performance
drops from 106 to 65.2 MHz. But using the EAB the necessary
routing is essential reduced and the performance for the 2 channel
filter bank only drops from 86.2 to 84.7 MHz.

Type #LE #EAB Bits Speed [MHz]
DB4 643 – 20 106
DB8 515 16 21 86:2
DWT8 2737 – 20 65:2
DWT8 1110 32 21 84:7

There is also an essential number of LE necessary for the EAB
design because the adders (20 or 21 bit) again have to be pipelined.

5. RESIDUE NUMBER SYSTEM (RNS)

The silicon area associated with a constant-speed fixed-point MAC
unit is generally considered to geometrically increase with word-
length. The antithesis is the Residue Number System (RNS) which
has a linear relationship between MAC silicon area and speed
[10]. The RNS, therefore, provides an opportunity to overcome
the precision barrier in high-performance FPL applications. The
RNS mechanics are well understood. RNS integer arithmetic is
performed concurrently in parallel non-communicating small word

length channels. An RNS system is defined in terms of a basis
set fm1;m2; : : : ;mLg of relatively prime positive integers. The
dynamic range of the resulting system is M =

QL

l=1 ml. RNS
arithmetic is defined with respect to the ring isomorphism

ZM �=Zm1 �Zm2 � � � � �ZmL (4)

Specifically, ZM = Z=(M) which corresponds to the ring of
integers modulo M . The mapping of an integer X into the
RNS is defined to be the L-tuple X = (x1; x2; : : : ; xL) where
xl = X mod ml, for l = 1;2; : : : L. Defining 2 to be either the
algebraic operation +;� or �, it follows that if 0 � Z < M , then

Z = X2Y mod M (5)

is isomorphic to Z = (z1; z2; : : : ; zL) where

zl = xl2yl mod ml l = 1; 2; : : : ; L (6)

Here it is evident that the RNS arithmetic is performed in parallel
within channels whose word width is bounded bywl = dlog2(ml)e
where typically wl � 8-bits. In practice, most RNS arithmetic
systems use small RAM or ROM tables to implement the modular
mappings zl = xl2yl mod ml.

RNS systems have been built as custom VLSI devices [11],
GaAs, and LSI [10]. For a small wordlengths, the RNS has been
shown to provide a significant speed-ups [12] using the 24 � 2 bit
tables found in a Xilinx XC4000 FPGAs. For larger moduli, the
28�8 bit tables belonging to the Altera FLEX CPLDs are beneficial
in designing RNS arithmetic and RNS-to-integer converters. With
the ability to support larger moduli, the design of high-precision
FPL systems becomes a practical reality.

A wide variety of modular addition designs exist [13]. Using
LEs only, the design of Fig. 3(a) is viable for FPLs. The Altera
FLEX CPLD contains a small number of 2K Bit ROMs or RAMs
(EABs) which can be configured as 28�8;29�4;210�2 or 211�1
tables which can be used for modulo ml correction. The next table
shows re-designed [14] 6, 7, and 8-bit modulo adder.

Bits Pipe 6 7 8
0 41.3 MSPS 46.5 MSPS 33.7 MSPSMPX

27 LE 31 LE 35 LE
2 76.3 MSPS 62.5 MSPS 60.9 MSPSMPX

16 LE 18 LE 20 LE
3 151.5 MSPS 138.9 MSPS 123.5 MSPSMPX

27 LE 31 LE 35 LE
86.2 MSPS 86.2 MSPS 86.2 MSPS

3 7 LE 8 LE 9 LEROM
1 EAB 1 EAB 2 EAB

Although the ROM shown in Fig 3 provides high-speed, the
ROM itself produces a four cycle pipeline delay and the number of
ROMs is limited. ROMs, however, are mandatory for the scaling
schemes discussed in the next section. The multiplexed-adder
(MPX-Add) has comparatively a reduced speed even if a carry
chain is added to each column. The pipelined version usually
needs the same number of LEs as the un-pipelined version but runs
about twice as fast. Maximum throughput occurs when the adders
are implemented in two blocks (where each block has 8 LEs for
Altera FLEX 10K devices) within six-bit pipelined channels.

Several other RNS basic building blocks were designed. This
includes modulo adder for the index domain, i.e. modulo multi-
plier, Converter (BIN!RNS and RNS!BIN) and a ��CRT. Altera

Pipeline
register

x+y M

c

1 0

MPX

+

2 -M

y

+

x

c

b
yx

+

Size: b2 b+1

ROM

c

(a) (b)

Figure 3: Modular addition with CPLD. (a) MPX-Add and MPX-
Add-Pipe. (b) ROM-Pipe.

TMS320C51
TMS320C601
DA/RNS
CSD

5 10
0

50

100

150

200

Number of TAPs

In
pu

t r
at

e
[M

S
P

S
]

Figure 4: Comparison of programmable DSPs and FPL two chan-
nel DWT filter banks.

VHDL version 7.1 does not allow generic clauses. gawk and c
programs have been developed for an automatic generation of the
basic building blocks, simply by specifying the desired blocks and
the moduli set. Within seconds a complete set of error free, highly
optimized VHDL code blocks is produced for a specific moduli
set.

Using this build blocks single DB4 RNS channel have been
designed in 6, 7, and 8 RNS arithmetics as shown in the following
table:

Type #LE #EAB Bits Speed [MHz]
DB4 233 2 6 73:5
DB4 260 2 7 86:2
DB4 287 4 8 82:6

6. CONCLUSION

The Figure 4 shows in conclusion that all three proposed design
strategies outperform the fastest commercial available program-
mable DSP for DWT of length larger than 4. For the complexity
for this medium precision (10 Bit coefficient) design the RAG i.e.
factor CSD code design gives the best results. But the effort for
DA and RNS design are not dependent on the specific coefficient
values and for higher precision this strategies may be superior.

7. REFERENCES

[1] Altera Corporation, “Data Sheet,” FLEX 10K CPLD Family,
June 1996.

[2] R. Hartenstein, J. Becker, and R. Kress, “Costum computing
machines vs. hardware/software co-design: From a global-
ized point of view,” in Lecture Notes in Computer Science,
Sept. 1996, vol. 1142, pp. 1142:65–76.

[3] M. Acheroy, J.-M. Mangen, and Y. Buhler., “Progressive
wavelet algorithm versus jpeg for the compression of me-
teosat data,” in SPIE, San Diego, 1995.

[4] Z. Mou and P. Duhamel, “Short-length fir filters and their use
in fast nonrecursive filtering,” IEEE Transactions on Signal
Processing, vol. 39, pp. 1322–1332, June 1991.

[5] O. Rioul and P. Duhamel, “Fast algorithms for discrete and
continuous wavelet transforms,” IEEE Transactions on In-
formation Theory, vol. 38, no. 2, pp. 569–586, Mar. 1992.

[6] I. Koren, Computer Arithmetic Algorithms, Prentice Hall,
Englewood Cliffs, New Jersey, 1993.

[7] Uwe Meyer-Baese, Schnelle digitale Signalverarbeitung,
Oldenbourg Verlag, 1998.

[8] A. Dempster and M. Macleod, “Use of minimum-adder mul-
tiplier blocks in fir digital filters,” IEEE Transactions on
Circuits and Systems II, vol. 42, pp. 569–577, Sept. 1995.

[9] S. White, “Applications of distributed arithmetic to digital
signal processing: A tutorial review,” IEEE Transactions on
Acoustics, Speech and SignalProcessingMagazine, pp. 4–19,
July 1989.

[10] M. Soderstrand,W. Jenkins,G. Jullien, and F. Taylor, Residue
Number System Arithmetic: Modern Applications in Digital
Signal Processing, IEEE Press Reprint Series. IEEE Press,
1986.

[11] J. Mellott, M. Lewis, F. Taylor, and P. Coffield, “ASAP – a
2D DFT VLSI processor and architecture,” in International
Symposiumon Circuits and Systems,May 1996, pp. 261–264.

[12] V. Hamann and M. Sprachmann “Fast Residual Arithmetics
with FPGAs”. Proceedings of the Workshop on Design
Methodologies for Microelectronics, Smolenice Castle, Slo-
vakia, pages 253 - 255, Sept. 1995.

[13] M. Bayoumi, G. Jullien, and W. Miller, “A VLSI implemen-
tation of residue adders,” IEEE Transactions on Circuits and
Systems, pp. 284–288, Mar. 1987.

[14] A. Garcia, U. Meyer-Baese, and F. Taylor, “Pipelined
Hogenauer CIC filters using field-programmable logic and
residue number system,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing, May 1998,
vol. 5, pp. 3085–3088.

