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ABSTRACT

Good HMM-based speech recognition performance reguires at
most minimal inaccuraciesto be introduced by HMM conditional
independence assumptions. In this work, HMM conditional inde-
pendence assumptions are relaxed in a principled way. For each
hidden state value, additional dependencies are added between
observation elementsto increase both accuracy and discriminabil -
ity. These additional dependenciesare chosen accordingto natural
statistical dependencies extant in training data that are not well
modeled by an HMM. Theresult is called a buried Markov model
(BMM) becausetheunderlying Markov chaininan HMM isfurther
hidden (buried) by specific cross-observation dependencies. Gaus-
sian mixture HMM s are extended to represent BMM dependencies
and new EM update equations are derived. On preliminary ex-
periments with alarge-vocabulary isolated-word speech database,
BMMs are ableto achieve an 11% improvement in WER with only
a 9.5% increase in the number of parameters using a single state
per mono-phone speech recognition system.

1. INTRODUCTION

Hidden Markov Models (HMMs) are the most common method
used in automatic speech recognition systems to model the joint
probability distribution of feature vectors for a given utterance
model. Two conditional independence assumptions characterize
HMMs: 1) observations are conditionally independent of other
observations given the hidden state at the current time, and 2) the
hidden state is conditionally independent of any preceding vari-
ables given the previous hidden state. In principle, an HMM can
model a given probability distribution to an arbitrarily high degree
of accuracy [3, 7]. The conditional independence assumptions as-
sociatedwith HMMsasthey are usedin practice, however, havenot
been demonstrably or provably shown to be sufficient for optimal
speech recognition. Therefore, an open challengeis how to either
increase the modeling power of or change the modeling assump-
tions made by an HMM such that, without an enormous increase
in free parameters and complexity, speech-recognition error rates
can improve.

One method to increase an HMM's ability is to increase the
number of hidden states[7, 3] or to use a factored hidden-variable
representation [6]. An alternative method adds explicit fixed de-
pendenciesfrom observationsto other observationsin the acoustic
context, e.g., AR-HMMs[12, 8] and correlation models[13]. And
in segmental modelg[10], a hidden state correspondsto a segment
trajectory that defineslocal statistics.

In this paper, a new method is introduced that augments an
HMM'’s modeling power in a systematic way. Starting with an
existing HMM, statistical dependencies are added between ob-
servations that, for each hidden state value, provide both useful
and discriminative information not already provided by the hid-
den variable. Previousresults [3] showed WER improvements on
a small-vocabulary isolated-word speech database using whole-
word models. In this paper, preliminary reports show WER reduc-
tionsfor the PHONEBOOK[11] databaserelative to abaselineHMM.
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Section 2 motivates the addition of data-derived statistical depen-
dencies to an HMM. Section 3 outlines a dependency selection
algorithm based on conditional mutual information. Section4 uses
a graphical model[9] to describe the result. Section 5 introduces
and derives EM update equationsfor Gaussian mixture extensions.
Section 6 provides WER results on the PHONEBOOK database.

2. LEARNING BOTH STATISTICAL DEPENDENCIES
AND MODEL PARAMETERS FROM DATA

In many statistical pattern classification tasks, a corpus of data
is used to train a parametric probabilistic model. While the pa-
rameters of the model vary during training, the underlying model
structure in terms of the attainable statistical dependencies stays
fixed. Typically, a priori fixed statistical models are used without
analyzing their ability to model crucial dependenciesin the data.
If such a model is unable to represent the important dependen-
cies, performance might suffer regardless of how well the model is
trained.

Natural sensory signals originating from the environment have
idiosyncratic statistical dependencies. There have been successful
attempts to predict neural processing using only environmental
statistical properties[1]. Indeed, it isthese statistical dependencies
that separate signal from noise and can help distinguish one class
of signals from another or one type of object within a class from
another. A logical approach therefore is to “predict” a statistical
model from the data. For aclassof signals such as speech, benefits
could be obtained by explicitly modeling speech’suniquestatistical
dependencies.

Modern speech recognition systems use HMMs to represent
probability distributions. A reasonable approach therefore is to
augment an HMM with only those statistical dependencies that
are found to be missing but useful according to training data. In
the work presented here, the dependenciesare between individual
observation elements. The training data is then used as usual
to adjust the resulting model’s parameters. The result is called
a buried Markov model (BMM) because the underlying Markov
chain in an HMM s further hidden (buried) by specific cross-
observation dependencies.

3. BUILDING BMM DEPENDENCIES

For a given number of hidden-variable states, the degree to which
a hidden variable does not contain contextual information can be
measured using conditional mutual information. The conditional
mutual information 1(X¢; X<|Q¢) = Zq (X Xet|Qr =

)p(Q: = ¢) represents' the quantity of additional information
X <+ providesabout X not already provided by Q:, where @; isthe
hidden random variable at time ¢. In particular, I(X:; X«¢|Q: =
¢) representsthe amount missing for aparticular hidden state value
g. Thissuggeststhat if I(X;; X«¢|Q: = ¢) > 0, the accuracy of

1The notation X,y represents the set {X1,..., Xn} and X<; =
Xi(t—1



an HMM can beimproved without increasing the number of states
by augmenting the observation models with dependenciesdirectly
on contextual data. It also suggests that dependencies should be
added 1) only on the “relevant” contextual data, 2) that are poten-
tially distinct for eachvalue of ., and 3) that are chosento provide
only new information not already provided by ;.

Using the hidden-variable first-order Markov assumption, the
joint distribution of the observations can be written:

p(X1r) ZH}) Xo| Xy, ...

91T

y Xe1, e )p(ge|ge—1)-

In this form, the distribution of X; dependson all previous time
frames. As described in [3] (and motivated in [4]), the following
slightly more general model is considered:

p(X1r) ZHP Xi| X Ry, g6)p(gelge-1)
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where Xth C {Xl, ey Xt—l, Xt+1, ey XT} is a subset of
X:'s surrounding context. Assume the number of elements in
Xg,, isfixed. If the elements of Xg,, are chosen to maximize
the conditional mutual information I(X+; Xr,, |Q: = ¢:) for each
possible value of ¢:, X'r,, will be avector consisting of relevant
(i.e., entropy reducing) and non-redundant (i.e., containing infor-
mation not already provided by Q) portions of X;’s context given
;=

¢ To mcreasetractablllty dependenciesare considered and added
individually for each feature element. Define the context of X,
(the:'" elementof X;) astheset Z; = {X;_¢; : V£, 5} — {Xu}.
The set of N variables Zk = {Zkl,.. s 2y } Providing the
greatest entropy reduction of X + when @, = ¢ can be found by
evaluating:

argmax (X 2y, 1Qr = q).
Z;CI:N CZu

Alone, this selection method suffices to increase the descriptive
power (i.e., lead to ahigher likelihood) of the model for aparticular
state ¢ but does not necessarily decrease classification error. A
potential problem, therefore, isthat the chosen dependenciesmight
also reduce “entropy” in the context of a different and incorrect
state. To increase the discriminability between different states,
dependenciesshould be chosenthat both 1) decreaseentropy in the
context of the correct state and 2) do not decrease the entropy (as
much) in other contexts. This second concept can be represented

with the following mutual information-like quantity:?
I{Qt=r}(X”; Zlil:N |Q: = q) =

(X4, Zi |Q: = q)
E i _ lo LN
PXi 2y o 19e=7) gP(Xti|Qt = p(Z},,1Qi = q)

for r € Cy where C is the set of states confusable with ¢. The
quantity Iyg,=ry (Xei; 2k, |Qr = ¢) is similar to mutual infor-
mation except that the individual event-wise entropy reductions
are averaged using the probability distribution for the confusable
context r rather than the original context ¢q. Using this notation,
I(X0; Ziy, 1Q0 = 0) = Tg,=q1(Xeii Z},, Qi = ¢). When
r # ¢, it represents the situation in a classification task during
evaluation of amodel in an incorrect context.

A general dependency selection algorithm is as follows: for
each ¢ and 7, choosethe size NV, set of variables Z;I_Nq for which

2Using the notation ., x [ f f plz
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Figure 1: Graphical model of an HMM. Shaded (resp. unshaded)
nodes represent observed (resp. hidden) variables.

I(Xti; Z;gl:Nq |Qt = q) islargeandI{Qtzr}(X”; Z;fl:Nq |Qt = q)
issmall for eachr € C,.

In[3], |t|semp|r|callyshownthatI(X“,ZklN |Q: = ¢q) > 0.
Moreover, several approximationsare madeto the above procedure

that lead to a heuristic dependency selection algorithm. Thisalgo-
rithm chooses a set of dependenciesZ; for each ¢ and ::

SetZy =10
Sort Z; € Zy; into an order decreasing by Uy:(Z;)
Repeat over j until Ui (Z5) < 7o OF |Zgi| = Ng:
If 7Z; satisfiesall the following criteria:
N I(Xei: 2,]Q0 = q) > 74

2) Foreach 7 € Zoi, 12,1 21Q0) < 7 I(Z): XilQu = q)

) [(Xei; Z;1Qe € Cg) < 7c
thenadd Z; to Z

Z; isavariablein X;'s context under consideration and Uy ( Z)

isthe utility of Z; approximated as:
Oti(ZJ) = I(Xti;ZJ|Q = q) - I(Xti§ Z;|Q € Cq)~

This algorithm requires only the computation of pairwise condi-

tional mutual information for a given labeling scheme.

4. GRAPHICAL MODELS

A graphical model [9] (also called a Bayesian network) provides a
natural way of depicting conditional independence assumptions
about a collection of random variables. A directed graphical
model is a graph where nodes represent random variables and di-
rected edges represent conditional independence assumptions cor-
responding to directed separation (or d-separation[9]) properties.
Both HMMs and BMM s can be described using a graphical model.
Indeed, the preceding dependency selection procedure can be con-
sidered aform of graphical model structure-learning algorithm.

The graphical model for an HMM is described in Figure 1.
Both types of HMM conditional independence assumptions are
represented by this picture.

BMM conditional independence assumptions can also be de-
scribed by such a graph, as shown in Figure 2. This graph shows
those dependenciesonly for a particular assignment to the hidden
variables. A different assignment will result in a different set of
cross-observation dependencies. Whileitispossibleto useagraph-
ical model to describe the dependenciesunder all hidden-variable
assignments, such a graph quickly becomes unwieldy (because of
repeated burying).

In Figure 2, adistinction is made between two different obser-
vation vector streams X1.7 and Y1.r. For an HMM,

ZHP Xt,Yt|Qt Qt|Qt 1)
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Figure 2: Graphical model of aBMM with a particular assignment
to the hidden variables. Striped nodes indicate hidden variable
binding.

QOHOOY

and p( X, Yilge) = p(Xe|Yy, qo)p(Yelge). 1T Yy is marginally in-
dependent of ¢ but Y; not independent of ¢. given X, then mod-
eling p(Y:|q.) is at best superfluous and at worst detrimental (i.e.,
it could add irrelevant and interfering parameters to the model).
With the BMM described in the figure, p(Y:|q¢ ) is ignored but the
dependency variables may consist of elements from both the X
and Y streams. For speech recognition, X could be RASTA-PLP
or MFCC features; Y; could be acoustic featuresinformative about
vocal tract length, gender, speaking rate, noise condition, etc. all of
which havelittle if any dependenceon the hidden state (e.g., phone,
syllable, etc.). With such features, aBMM is perhapsanalogousto
an online speaker adaptation procedure.

5. GAUSSIAN-MIXTURE BMMS

Gaussian mixture HMMs can be extended to include the cross-
observation dependencies specified by a BMM. The observation
models should allow their entropy to be affected by the additional
dependencieswhile still leading to efficient EM update eguations.
To this end, hidden variables m and v are introduced to obtain the
following:

(z]z,q) = ZprvaZq

m=1v=1

where © = (z1,...,z4)" iS an observation vector, z =
(z1,...,2s, 1) is the entire collection of dependency variables
any element of = might use (appended with the constant 1 to com-
pute afixed mean offset), m indicatesa mixture component, and v
indicates the class of z. m is assumed to be independent of other
variables given v and ¢, and v is assumed to be independent of
other variables given = resulting in:

(z]2,9) = ZZP z|m, v, z, g)p(m|v, g)p(v]z)

m=1v=1

WhEI’Epgmh), q) isadiscrete probability table, p(v|z) is the prob-
ability of class v given continuous vector z, and

1
(27) 2| Z g |12

—3(2=Bgmv2) T (v —Bymu2)

p(zlm, v, z,q) =

isaGaussian distribution with mean By, z and covariance Z4m. .
The d x (s+ 1)-sized Bgm. matrices have a sparse structure deter-
mined by the BMM dependenciesfor state q.

With z containing observations only from z’s past, these
equations alone constitute a generalization of vector-valued auto-
regressive HMMs [8,13] (d > 1L, M =1,V =1). WithV > 1
and M > 1, this model can be considered a mixture of mixtures.
Animportant difference from previouswork is that here the depen-
dency structure, as represented by B, iS sparse, data-derived,
and hidden-variable dependent as described in Section 3. Further-
more, z can contain observations from «’s past, present, future, or
from a different feature stream.

Consider datamatricesx = z1.7, m = myr, v = vyr, and
7z = z1.7. Thetransition matrix update equations are the same as
usual, so their derivation is skipped and the dependenceon ¢ is
momentarily dropped. The EM auxiliary equation becomes:

Q0,0 ZZIogpxmv|z O)p(m, v|x,z,07%)

M V T
= Z ZZIng(mt,m,ﬂzt,@)vmm

m=1v=1 t=1
where vt = p(m, v|z, 2, ©%), ©9 are parameters from the
previous iteration, and © are the parameters to optimize. This
reducesto three equationswhich can beindependently maximized.

Q:(0,0%) = ) logp(zi|m,v.z,0)ymue (D)
m,v,t
Q2(0,0%) = ) 10gp(m|v,©)mec @
m,v,t
3(©, ©%) Z 10gp(v|2:©)Ymor = Zlogp v|zt, @)yt
m,v,t
€)

where v, = p(v|ze, z¢, ©9).
Ignoring any constants, Equation 1 can be represented as:

1 -
Z _E [Iog(|zmv|) + (xt - Bmvzt)/zm%;(xt - Bmvzt)] TYmut

m,v,t

Taking the derivative with respect to B, and setting the result to
Zero gives:
T
Z(xt - Bmvzt)zé'}/mvt = O
t=1
which can easily be solved for B,,.. To find the update rule for
zmv, let Wmot = Tt — Bmoy 2¢ and Hm = 0. Equation 1 becomes

1 _
Z _E [Iog(|zmv|) + (wmvt - UM)/zmi(wmvt — Hm)] Ymut
m,v,t
which has the sameform asthe usual Gaussianmixture case[2, 7].

Equation 2 can be optimized by introducing a L agrange mul-
tiplier A:

Z logp(m|v, ©)Ymor —

™m,v,t

(o)

Equation 3 can be optimized by noting that v is assumedinde-
pendent of = given z:

> logp(v]=,
v,t

O)p(v|z:, ©9)



This quantity is maximized when D(pg'u|zt, O)||p(v|z, ©9)) is
minimized which occurs when © = @ for those portions of ©
that affect thisdistributions. Therefore, p(v|~) doesnot change be-
tween EM iterations, so any (perhaps unsupervised) classification
method can be used prior to EM BMM learning.

Reintroducing the ¢ variable, the EM update eguations for
maximum-likelihood parameter estimation are as follows:

T T -1
Bymy = (Z Ygmv (t)xtzé) (Z Ygmv (t)ztzé) ,
t=1 t=1

_ Z?:l 'quv(t)(xt - quvzt)(xt - quvzt)/
- T
Zt:l ’quv(t)

> Yamo (1)
ZtT=1 Zi\ndzl Ygmo(t)

where vgmo (t) = p(qe = ¢, my = m, vy = v|X, Z).

% o :

and

p(m|v,q) =

6. PHONEBOOK RESULTS

Speech recognition results were obtained using PHONEBOOK,
a large-vocabulary, phonetically-rich, isolated-word, telephone-
speech database[11]. All data is represented using 12 MFCCs
plus ¢o and deltas resulting in ad = 26 element feature vector
sampled every 10ms.

The training and test sets are as defined in [5]. Test words
do not occur in the training vocabulary, so test word models are
constructed using phone-models learned during training. Strictly
left-to-right transition matrices were used except for an optional
beginning and ending silence model.

An HMM baseline system, bootstrapped using uniform seg-
mental k-means, was developed using 42 phone models (41 mono-
phones + silence), a single HMM state per mono-phone, and no
durational modeling. Each phone model uses a mixture of 48
diagonal covariance Gaussians. While more complex context-
dependent multi-state phone-models are known to be beneficial, a
demonstrableimprovement in thisinitial simpler caseis desirable.
Thedictionary included with PHONEBOOK distribution was used for
all pronunciations.

BMMs with V' = 1 are bootstrapped with an HMM as de-
scribed in [3]. Eight phonetically derived clusters were used to
define the confusable classes C;: silence, tongue fronting vow-
els, diphthongs, tongue retraction, retroflex, nasals, fricatives, and
plosives.

Lex. Size | 75 150 300 600 Params
HMM 57% | 7.6% | 9.8% | 14.1% || 105k
BMM 51% | 7.1% | 9.3% | 13.4% || 115k

Table 1: HMM and BMM comparison. The dependency selection
parameters are 7, = 0.0,7, = 2.25x 1073, 7, = 75%, 7. =
6.1 x 1073, N, = 20, and C, is phonetically derived.

Results are shown in Table 1. Lexicon sizes of 75 (averaged
over 8independent test cases), 150 (4 cases), 300 (2 cases), and 600
words are presented. In each test case for each lexicon, a BMM
is never worse than the corresponding HMM, so the increase in
average performance is due only to a BMM outperforming an
HMM. In the above, dependency links were alowed to span a
maximum of 100ms (10 frames) into the past. Threshold values
were chosen using 10°" percentiles of the mutual information data
values.

The baseline HMM system used 105k observation model pa-
rameters and the BMM used an additional 10k parameters result-
ing in 115k parameters. The 5.7% baseline HMM result for the

75 word vocabulary is better than the 7.1% result reported for a
comparable 153k observation-parameter mono-phone system [5].
Theresults show that for the 75 word lexicon, an 11% BMM WER
performanceimprovement is be obtained with only a modest 9.5%
increasein the number of parameters. Improvementsare also found
for the larger lexicon sizes.

7. DISCUSSION

HMM conditional independence assumptions can be relaxed by
including additional probabilistic state-specific dependenciesonly
to the relevant and discriminative observation context. In this
paper, a method has been provided that chooses this context us-
ing conditional mutual information. WER performance improve-
ments have been demonstrated on alarge-vocabulary isolated-word
speech database.

The selection of good dependencieswasfound to be important
for achieving good WER results. For example, if 7. is set high
enoughto render it nonexistent, and if Z; is chosen ordered not by
utility but by maximum mutual information alone, the likelihoods
of the resulting modelsincrease dramatically but the WER results
becomeworse. Thiscould explainthe mixed successof AR-HMMs
in the past[8] where “dependencies’ are fixed a priori without
regard to their affect on information gain and discriminability.

This work has benefited from discussions with Geoff Zweig,
Katrin Kirchhoff, Nelson Morgan, and Nir Friedman and hasbeen
partially sponsored by ONR URI Grant NO0014-92-J-1617 and a
DoD IDEA grant.
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