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ABSTRACT

Good HMM-based speech recognition performance requires at
most minimal inaccuracies to be introduced by HMM conditional
independence assumptions. In this work, HMM conditional inde-
pendence assumptions are relaxed in a principled way. For each
hidden state value, additional dependencies are added between
observation elements to increase both accuracy and discriminabil-
ity. These additional dependencies are chosen according to natural
statistical dependencies extant in training data that are not well
modeled by an HMM. The result is called a buried Markov model
(BMM) because the underlying Markov chain in an HMM is further
hidden (buried) by specific cross-observation dependencies. Gaus-
sian mixture HMMs are extended to represent BMM dependencies
and new EM update equations are derived. On preliminary ex-
periments with a large-vocabulary isolated-word speech database,
BMMs are able to achieve an 11% improvement in WER with only
a 9.5% increase in the number of parameters using a single state
per mono-phone speech recognition system.

1. INTRODUCTION

Hidden Markov Models (HMMs) are the most common method
used in automatic speech recognition systems to model the joint
probability distribution of feature vectors for a given utterance
model. Two conditional independence assumptions characterize
HMMs: 1) observations are conditionally independent of other
observations given the hidden state at the current time, and 2) the
hidden state is conditionally independent of any preceding vari-
ables given the previous hidden state. In principle, an HMM can
model a given probability distribution to an arbitrarily high degree
of accuracy [3, 7]. The conditional independence assumptions as-
sociated with HMMs as they are used in practice, however, have not
been demonstrably or provably shown to be sufficient for optimal
speech recognition. Therefore, an open challenge is how to either
increase the modeling power of or change the modeling assump-
tions made by an HMM such that, without an enormous increase
in free parameters and complexity, speech-recognition error rates
can improve.

One method to increase an HMM’s ability is to increase the
number of hidden states[7, 3] or to use a factored hidden-variable
representation [6]. An alternative method adds explicit fixed de-
pendencies from observations to other observations in the acoustic
context, e.g., AR-HMMs [12, 8] and correlation models [13]. And
in segmental models[10], a hidden state corresponds to a segment
trajectory that defines local statistics.

In this paper, a new method is introduced that augments an
HMM’s modeling power in a systematic way. Starting with an
existing HMM, statistical dependencies are added between ob-
servations that, for each hidden state value, provide both useful
and discriminative information not already provided by the hid-
den variable. Previous results [3] showed WER improvements on
a small-vocabulary isolated-word speech database using whole-
word models. In this paper, preliminary reports show WER reduc-
tions for the PHONEBOOK[11] database relative to a baseline HMM.

Section 2 motivates the addition of data-derived statistical depen-
dencies to an HMM. Section 3 outlines a dependency selection
algorithm based on conditional mutual information. Section 4 uses
a graphical model[9] to describe the result. Section 5 introduces
and derives EM update equations for Gaussian mixture extensions.
Section 6 provides WER results on the PHONEBOOK database.

2. LEARNING BOTH STATISTICAL DEPENDENCIES
AND MODEL PARAMETERS FROM DATA

In many statistical pattern classification tasks, a corpus of data
is used to train a parametric probabilistic model. While the pa-
rameters of the model vary during training, the underlying model
structure in terms of the attainable statistical dependencies stays
fixed. Typically, a priori fixed statistical models are used without
analyzing their ability to model crucial dependencies in the data.
If such a model is unable to represent the important dependen-
cies, performance might suffer regardless of how well the model is
trained.

Natural sensory signals originating from the environment have
idiosyncratic statistical dependencies. There have been successful
attempts to predict neural processing using only environmental
statistical properties [1]. Indeed, it is these statistical dependencies
that separate signal from noise and can help distinguish one class
of signals from another or one type of object within a class from
another. A logical approach therefore is to “predict” a statistical
model from the data. For a class of signals such as speech, benefits
could be obtained by explicitly modeling speech’sunique statistical
dependencies.

Modern speech recognition systems use HMMs to represent
probability distributions. A reasonable approach therefore is to
augment an HMM with only those statistical dependencies that
are found to be missing but useful according to training data. In
the work presented here, the dependencies are between individual
observation elements. The training data is then used as usual
to adjust the resulting model’s parameters. The result is called
a buried Markov model (BMM) because the underlying Markov
chain in an HMM is further hidden (buried) by specific cross-
observation dependencies.

3. BUILDING BMM DEPENDENCIES

For a given number of hidden-variable states, the degree to which
a hidden variable does not contain contextual information can be
measured using conditional mutual information. The conditional
mutual information I(Xt;X<tjQt) =

P
q
I(Xt;X<tjQt =

q)p(Qt = q) represents1 the quantity of additional information
X<t provides aboutXt not already provided byQt, whereQt is the
hidden random variable at time t. In particular, I(Xt;X<tjQt =
q) represents the amount missing for a particular hidden state value
q. This suggests that if I(Xt;X<tjQt = q) > 0, the accuracy of

1The notation X1:N represents the set fX1; : : : ; XNg and X<t =
X1:(t�1)



an HMM can be improved without increasing the number of states
by augmenting the observation models with dependencies directly
on contextual data. It also suggests that dependencies should be
added 1) only on the “relevant” contextual data, 2) that are poten-
tially distinct for each value ofQt, and 3) that are chosen to provide
only new information not already provided by Qt.

Using the hidden-variable first-order Markov assumption, the
joint distribution of the observations can be written:

p(X1:T ) =
X
q1:T

Y
t

p(XtjX1; : : : ;Xt�1; qt)p(qtjqt�1):

In this form, the distribution of Xt depends on all previous time
frames. As described in [3] (and motivated in [4]), the following
slightly more general model is considered:

p(X1:T ) =
X
q1:T

Y
t

p(XtjXRqt
; qt)p(qtjqt�1)

where XRqt
� fX1; : : : ;Xt�1;Xt+1; : : : ;XT g is a subset of

Xt’s surrounding context. Assume the number of elements in
XRqt

is fixed. If the elements of XRqt
are chosen to maximize

the conditional mutual information I(Xt;XRqt
jQt = qt) for each

possible value of qt, XRqt
will be a vector consisting of relevant

(i.e., entropy reducing) and non-redundant (i.e., containing infor-
mation not already provided by Qt) portions ofXt’s context given
Qt = q.

To increase tractability, dependencies are considered and added
individually for each feature element. Define the context of Xti

(the ith element ofXt) as the setZti = fXt�`;j : 8`; jg�fXtig.
The set of N variables Zi

k1:N
= fZi

k1
; : : : ; Zi

kN
g providing the

greatest entropy reduction of Xti when Qt = q can be found by
evaluating:

argmax
Zi
k1:N

� Zti

I(Xti;Z
i
k1:N

jQt = q):

Alone, this selection method suffices to increase the descriptive
power (i.e., lead to a higher likelihood) of the model for a particular
state q but does not necessarily decrease classification error. A
potential problem, therefore, is that the chosen dependenciesmight
also reduce “entropy” in the context of a different and incorrect
state. To increase the discriminability between different states,
dependenciesshould be chosen that both 1) decrease entropy in the
context of the correct state and 2) do not decrease the entropy (as
much) in other contexts. This second concept can be represented
with the following mutual information-like quantity:2

IfQt=rg(Xti;Z
i
k1:N

jQt = q) =

Ep(Xti;Z
i
k1:N

jQt=r)

�
log

p(Xti; Z
i
k1:N

jQt = q)

p(XtijQt = q)p(Zi
k1:N

jQt = q)

�
for r 2 Cq where Cq is the set of states confusable with q. The
quantity IfQt=rg(Xti;Zi

k1:N
jQt = q) is similar to mutual infor-

mation except that the individual event-wise entropy reductions
are averaged using the probability distribution for the confusable
context r rather than the original context q. Using this notation,
I(Xti;Zi

k1:N
jQt = q) = IfQt=qg(Xti;Zi

k1:N
jQt = q). When

r 6= q, it represents the situation in a classification task during
evaluation of a model in an incorrect context.

A general dependency selection algorithm is as follows: for
each q and i, choose the size Nq set of variables Zi

k1:Nq
for which

2Using the notation Ep(X)[f(X)] =
R
p(x)f(x)dx.
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Figure 1: Graphical model of an HMM. Shaded (resp. unshaded)
nodes represent observed (resp. hidden) variables.

I(Xti;Zi
k1:Nq

jQt = q) is large and IfQt=rg(Xti;Zi
k1:Nq

jQt = q)

is small for each r 2 Cq .
In [3], it is empirically shown that I(Xti;Zi

k1:Nq
jQt = q) > 0.

Moreover, several approximations are made to the above procedure
that lead to a heuristic dependency selection algorithm. This algo-
rithm chooses a set of dependenciesZqi for each q and i:

SetZqi = ;
Sort Zj 2 Zti into an order decreasing by Uti(Zj)
Repeat over j until Uti(Zj) < �u or jZqij = Nq:

If Zj satisfies all the following criteria:
1) I(Xti;Zj jQt = q) > �q
2) For each Z 2 Zqi; I(Zj;ZjQt) < �gI(Zj;XtijQt = q)
3) I(Xti;Zj jQt 2 Cq) < �c

then add Zj to Zqi .

Zj is a variable in Xti’s context under consideration and Uti(Zj)
is the utility of Zj approximated as:

Ûti(Zj) = I(Xti;Zj jQ = q)� I(Xti;ZjjQ 2 Cq):

This algorithm requires only the computation of pairwise condi-
tional mutual information for a given labeling scheme.

4. GRAPHICAL MODELS

A graphical model [9] (also called a Bayesian network) provides a
natural way of depicting conditional independence assumptions
about a collection of random variables. A directed graphical
model is a graph where nodes represent random variables and di-
rected edges represent conditional independence assumptions cor-
responding to directed separation (or d-separation[9]) properties.
Both HMMs and BMMs can be described using a graphical model.
Indeed, the preceding dependency selection procedure can be con-
sidered a form of graphical model structure-learning algorithm.

The graphical model for an HMM is described in Figure 1.
Both types of HMM conditional independence assumptions are
represented by this picture.

BMM conditional independence assumptions can also be de-
scribed by such a graph, as shown in Figure 2. This graph shows
those dependencies only for a particular assignment to the hidden
variables. A different assignment will result in a different set of
cross-observation dependencies. While it is possible to use a graph-
ical model to describe the dependencies under all hidden-variable
assignments, such a graph quickly becomes unwieldy (because of
repeated burying).

In Figure 2, a distinction is made between two different obser-
vation vector streams X1:T and Y1:T . For an HMM,

p(X1:T ; Y1:T ) =
X
q1:T

Y
t

p(Xt; Ytjqt)p(qtjqt�1):



Qt qt= Qt 1+ qt 1+=Qt 1– qt 1–=

X
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Y

Figure 2: Graphical model of a BMM with a particular assignment
to the hidden variables. Striped nodes indicate hidden variable
binding.

and p(Xt; Ytjqt) = p(XtjYt; qt)p(Ytjqt). If Yt is marginally in-
dependent of qt but Yt not independent of qt given Xt, then mod-
eling p(Ytjqt) is at best superfluous and at worst detrimental (i.e.,
it could add irrelevant and interfering parameters to the model).
With the BMM described in the figure, p(Ytjqt) is ignored but the
dependency variables may consist of elements from both the X
and Y streams. For speech recognition,Xt could be RASTA-PLP
or MFCC features; Yt could be acoustic features informative about
vocal tract length, gender, speaking rate, noise condition, etc. all of
which have little if any dependenceon the hidden state (e.g., phone,
syllable, etc.). With such features, a BMM is perhaps analogous to
an online speaker adaptation procedure.

5. GAUSSIAN-MIXTURE BMMS

Gaussian mixture HMMs can be extended to include the cross-
observation dependencies specified by a BMM. The observation
models should allow their entropy to be affected by the additional
dependencies while still leading to efficient EM update equations.
To this end, hidden variables m and v are introduced to obtain the
following:

p(xjz; q) =

MX
m=1

VX
v=1

p(x;m; vjz; q)

where x = (x1; : : : ; xd)
0 is an observation vector, z =

(z1; : : : ; zs; 1)0 is the entire collection of dependency variables
any element of x might use (appended with the constant 1 to com-
pute a fixed mean offset), m indicates a mixture component, and v
indicates the class of z. m is assumed to be independent of other
variables given v and q, and v is assumed to be independent of
other variables given z resulting in:

p(xjz; q) =

MX
m=1

VX
v=1

p(xjm;v; z; q)p(mjv; q)p(vjz)

where p(mjv; q) is a discrete probability table, p(vjz) is the prob-
ability of class v given continuous vector z, and

p(xjm;v; z; q) =
1

(2�)d=2jΣqmvj1=2
e
� 1

2 (x�Bqmvz)
0Σ�1
qmv(x�Bqmvz)

is a Gaussian distribution with meanBqmvz and covariance Σqmv .
The d�(s+1)-sizedBqmv matrices have a sparse structure deter-
mined by the BMM dependencies for state q.

With z containing observations only from x’s past, these
equations alone constitute a generalization of vector-valued auto-
regressive HMMs [8, 13] (d > 1, M = 1, V = 1 ). With V > 1
and M > 1, this model can be considered a mixture of mixtures.
An important difference from previous work is that here the depen-
dency structure, as represented by Bqmv , is sparse, data-derived,
and hidden-variable dependent as described in Section 3. Further-
more, z can contain observations from x’s past, present, future, or
from a different feature stream.

Consider data matrices x = x1:T , m = m1:T , v = v1:T , and
z = z1:T . The transition matrix update equations are the same as
usual, so their derivation is skipped and the dependence on q is
momentarily dropped. The EM auxiliary equation becomes:

Q(Θ;Θg) =
X
m

X
v

log p(x;m;vjz;Θ)p(m;vjx;z;Θg)

=

MX
m=1

VX
v=1

TX
t=1

log p(xt;m; vjzt;Θ)mvt

where mvt = p(m;vjxt; zt;Θg), Θg are parameters from the
previous iteration, and Θ are the parameters to optimize. This
reduces to three equations which can be independently maximized.

Q1(Θ;Θg) =
X
m;v;t

log p(xtjm;v; zt;Θ)mvt (1)

Q2(Θ;Θg) =
X
m;v;t

log p(mjv;Θ)mvt (2)

Q3(Θ;Θg) =
X
m;v;t

log p(vjztΘ)mvt =
X
v;t

log p(vjzt;Θ)vt

(3)
where vt = p(vjxt; zt;Θg).

Ignoring any constants, Equation 1 can be represented as:X
m;v;t

�
1
2

�
log(jΣmvj) + (xt �Bmvzt)

0Σ�1
mv(xt �Bmvzt)

�
mvt

Taking the derivative with respect to Bmv and setting the result to
zero gives:

TX
t=1

(xt �Bmvzt)z
0
tmvt = 0

which can easily be solved for Bmv . To find the update rule for
Σmv , let wmvt = xt �Bmvzt and �m = 0. Equation 1 becomesX
m;v;t

�
1
2

�
log(jΣmvj) + (wmvt� �m)

0Σ�1
mv(wmvt � �m)

�
mvt

which has the same form as the usual Gaussian mixture case [2, 7].
Equation 2 can be optimized by introducing a Lagrange mul-

tiplier �:

X
m;v;i

log p(mjv;Θ)mvt � �

 X
m

p(mjv;Θ)� 1

!

Equation 3 can be optimized by noting that v is assumed inde-
pendent of x given z:X

v;t

log p(vjzt;Θ)p(vjzt;Θg)



This quantity is maximized when D(p(vjzt;Θ)jjp(vjzt;Θg)) is
minimized which occurs when Θ = Θg for those portions of Θ
that affect this distributions. Therefore, p(vjz) does not change be-
tween EM iterations, so any (perhaps unsupervised) classification
method can be used prior to EM BMM learning.

Reintroducing the q variable, the EM update equations for
maximum-likelihood parameter estimation are as follows:

Bqmv =

 
TX
t=1

qmv(t)xtz
0
t

! 
TX
t=1

qmv(t)ztz
0
t

!�1

;

Σqmv =

PT

t=1 qmv(t)(xt � Bqmvzt)(xt �Bqmvzt)
0PT

t=1 qmv(t)
;

and

p(mjv; q) =

PT

t=1 qmv(t)PT

t=1

PM

m=1 qmv(t)

where qmv(t) = p(qt = q;mt =m;vt = vjx;z).

6. PHONEBOOK RESULTS

Speech recognition results were obtained using PHONEBOOK,
a large-vocabulary, phonetically-rich, isolated-word, telephone-
speech database[11]. All data is represented using 12 MFCCs
plus c0 and deltas resulting in a d = 26 element feature vector
sampled every 10ms.

The training and test sets are as defined in [5]. Test words
do not occur in the training vocabulary, so test word models are
constructed using phone-models learned during training. Strictly
left-to-right transition matrices were used except for an optional
beginning and ending silence model.

An HMM baseline system, bootstrapped using uniform seg-
mental k-means, was developed using 42 phone models (41 mono-
phones + silence), a single HMM state per mono-phone, and no
durational modeling. Each phone model uses a mixture of 48
diagonal covariance Gaussians. While more complex context-
dependent multi-state phone-models are known to be beneficial, a
demonstrable improvement in this initial simpler case is desirable.
The dictionary included with PHONEBOOK distribution was used for
all pronunciations.

BMMs with V = 1 are bootstrapped with an HMM as de-
scribed in [3]. Eight phonetically derived clusters were used to
define the confusable classes Cq : silence, tongue fronting vow-
els, diphthongs, tongue retraction, retroflex, nasals, fricatives, and
plosives.

Lex. Size 75 150 300 600
HMM 5.7% 7.6% 9.8% 14.1%
BMM 5.1% 7.1% 9.3% 13.4%

Params
105k
115k

Table 1: HMM and BMM comparison. The dependency selection
parameters are �u = 0:0; �q = 2:25 � 10�3, �g = 75%, �c =
6:1 � 10�3, Nq = 20, and Cq is phonetically derived.

Results are shown in Table 1. Lexicon sizes of 75 (averaged
over 8 independent test cases), 150 (4 cases), 300 (2 cases), and 600
words are presented. In each test case for each lexicon, a BMM
is never worse than the corresponding HMM, so the increase in
average performance is due only to a BMM outperforming an
HMM. In the above, dependency links were allowed to span a
maximum of 100ms (10 frames) into the past. Threshold values
were chosen using 10th percentiles of the mutual information data
values.

The baseline HMM system used 105k observation model pa-
rameters and the BMM used an additional 10k parameters result-
ing in 115k parameters. The 5.7% baseline HMM result for the

75 word vocabulary is better than the 7.1% result reported for a
comparable 153k observation-parameter mono-phone system [5].
The results show that for the 75 word lexicon, an 11% BMM WER
performance improvement is be obtained with only a modest 9.5%
increase in the numberof parameters. Improvements are also found
for the larger lexicon sizes.

7. DISCUSSION

HMM conditional independence assumptions can be relaxed by
including additional probabilistic state-specific dependencies only
to the relevant and discriminative observation context. In this
paper, a method has been provided that chooses this context us-
ing conditional mutual information. WER performance improve-
ments have been demonstrated on a large-vocabulary isolated-word
speech database.

The selection of good dependencies was found to be important
for achieving good WER results. For example, if �c is set high
enough to render it nonexistent, and if Zj is chosen ordered not by
utility but by maximum mutual information alone, the likelihoods
of the resulting models increase dramatically but the WER results
become worse. This could explain the mixed success of AR-HMMs
in the past[8] where “dependencies” are fixed a priori without
regard to their affect on information gain and discriminability.

This work has benefited from discussions with Geoff Zweig,
Katrin Kirchhoff, Nelson Morgan, and Nir Friedman and has been
partially sponsored by ONR URI Grant N00014-92-J-1617 and a
DoD IDEA grant.
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