ON THE USE OF SUPPORT VECTOR MACHINES FOR PHONETIC CLASSIFICATION
Philip Clarksort and Pedro J. Moreno

Compaq Computer Corporation,
Cambridge Research Laboratory
One Kendall Square, Building 700
Cambridge, MA 02139
USA

ABSTRACT experiments in phonetic classification using the more difficult and
general phonetically balanced TIMIT database. We conclude with
a discussion of the remaining issues which need to be addressed in
order to make SVMs useful for continuous speech recognition.

Support Vector Machines (SVMs) represent a new approach to
pattern classification which has recently attracted a great deal of in-
terest in the machine learning community. Their appeal lies in their
strong connection to the underlying statistical learning theory, in
particular the theory of Structural Risk Minimization. SVMs have 2. SUPPORT VECTOR MACHINES
been shown to be particularly successful in fields such as image
identification and face recognition; in many problems SVM clas- This section introduces the theory behind SVMs. Lack of space
sifiers have been shown to perform much better than other non-prohibits a more detailed discussion, but interested readers are re-
linear classifiers such as artificial neural networks &nakarest ferred to [14] for an in depth discussion or to [1] for a short tutorial.
neighbors.

This paper explores the issues involved in applying SVMs to
phonetic classification as a first step to speech recognition. We
present results on several standard vowel and phonetic classifi-Suppose we have a set of training samplesxs, . . . , x,, where
cation tasks and show better performance than Gaussian mixturex; € R™. Each sample has a corresponding lalgl, ... , ym
classifiers. We also present an analysis of the difficulties we fore- (wherey; € {—1,1}) that indicates which of two classes each
see in applying SVMs to continuous speech recognition problems. sample belongs to. Then the hyperpldme- x) + b separates the

data if and only if

2.1. The Linearly Separable Case

1. INTRODUCTION

The theory of Support Vector Machines was first introduced by (W-xi) +6>0 if  yi=1 @)

Vapnik and was developed from the theory of Structural Risk Min- (w-x;)+b<0 if y;=-1 2

imization [14]. SVMs learn the boundary regions between sam-

ples belonging to two classes by mapping the input samples intoand we can scater andb so that this is equivalent to

a high dimensional space, and seeking a separating hyperplane in

this space. The separating hyperplane is chosen in such a way as to )

maximize its distance from the closest training samples (a quantity (w-x))+b>1 if yi=1 (3)

referred to as thenargin). (w-x)+b< -1 if y;,=-1 4)
The appeal of SVMs is twofold. Firstly they do not need any

fine tuning of parameters, and secondly they exhibit a great abil- or

ity to generalize. In many problems SVMs have been shown to

provide better performance than more traditional techniques, such

as highly tuned neural networks. In recent years they have been yi((w-x;)+b)>1 ¥V 4 (5)
used in multiple applications (see [1]), from vision problems to ) ) ) )
text classification. However, their application to speech recogni- 10 find the optimal separating hyperplane, we need to find the

tion problems has been very limited. In this paper we focus on Plane which maximizes the distance between the hyperplane and
the simpler task of phonetic classification. Studying the perfor- the closest sample. The distance of the closest sample is
mance of SVMs in phonetic classification tasks will allow us to
unders_ta_md the issues involved in the more difficult task of speech ) WX, +b WX +b
recognition. d(w,b)= min —FY——— - max ——F— (6)

This paper is organized as follows: In section 2 we give a brief eilvi=) |wl eilyi=—1} W]
|ntrpduci|0n to thg\%leo;y of SVll\/Isl. In_?ec:_lon 3 we ctiﬁscprlbte €X" and from equation (4) we can see that the appropriate minimum
penments using s for vowe! classification using the Feterson 5,4 mayimum values are1. So we need to maximize
and Barney and the Deterding data sets. In section 4 we describe
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Therefore our problem is equivalent to minimizifey|? /2
subject to the constraints expressed in (5). By forming the La-
grangian, and solving the dual problem, this can be translated into
the following [1]:

Minimize
Za,_lza,a.y.yx,,){‘ (8)
: 1 2 . 13 Yi Yy A J
[3 1,7
subject to
a; > 0 ©)
= 0 (20)

Zaiyi

The «; are the Lagrange multipliers; there is one Lagrange
multiplier for each training sample. The training samples for which
the Lagrange multiplier is non-zero are calkgport vectorsand
are such that the equality in equation (5) holds. The samples with
Lagrange multipliers of zero could be removed from the training
set without affecting the position of the final hyperplane.

This is a well understood quadratic programming problem,

2.3. The non-linear case

The classification framework outlined above is limited to linear
separating hyperplanes. SVMs get around this problem by map-
ping the sample points into a higher dimensional space using a
non-linear mapping chosen in advance. That is, we choose a map
® : R" — H where the dimension off is greater tham. We
then seek a separating hyperplane in the higher dimensional space,
this is equivalent to a non-linear separating surfad@’in

The data only ever appears in our training problem (equa-
tions (8) to (10)) in the form of dot products, so in the higher
dimensional space we are only dealing with the data in the form
®(x;) - ®(x;). If the dimensionality of/{ is very large, then this
could be difficult, or very computationally expensive to compute.
However, if we have &ernel functionsuch thatK (x;,x;) =
®(x;) - ®(x;), then we can use this in placexf - x; everywhere
in the optimization problem, and never need to know explicitly
what® is.

Some examples of kernel functions are the polynomial kernel
K(x,y) = (x -y + 1)? and the Gaussian radial basis function

(RBF) kernelK (x, y) = el ¥1°/27”,

2.4. Multi-class classifiers

So far we have only discussed using SVMs to solve two-class
problems. However, if we are interested in conducting phone clas-

and software packages exist which can find a solution. Such solversjification experiments, we will need to choose between multiple

are non-trivial, however, especially in cases where we have large
training sets [9].

2.2. The non-separable case

The optimization problem described in the previous section will
have no solution if the data is not separable. In order to cope with
this scenario, we modify the constraints (1) and (2) such that the
constraints are looser, but a penalty is incurred for misclassifica-
tion:

X, -w+b > l—giifinI (11)
x;-w+b < &‘—lifyi:—l (12)
& =2 0V 4 (13)

If x; is to be misclassified, we must hage> 1, and hence
the number of errors is less thaf, ;. So we may add a penalty
for misclassifying training samples by replacing the function to be
minimized by|w|* /2 + C (3, &), whereC'is a parameter which
allows us to specify how strictly we want the classifier to fit to the
training data.

If we form the Lagrangian, the dual problem now becomes:

Minimize
1
Do i 2 Y iy yiyiXi - X (14)
i i,j
subject to
0<a; <C (15)
(16)

Zaiyi =0

classes. The best method of extending the two-class classifiers
to multi-class problems is not clear. Previous work has generally
constructed a “one vs. all” classifier for each class [12], or con-
structed a “one vs. one” classifier for each pair of classes. The
“one vs. all” approach works by constructing for each class a clas-
sifier which separates that class from the remainder of the data. A
given test example is then classified as belonging to the class
whose boundary maximizgsv - x) + b. The “one vs. one” ap-
proach simply constructs for each pair of classes a classifier which
separates those classes. A test example is then classified by all of
the classifiers, and is said to belong to the class with the largest
number of positive outputs from these sub-classifiers.

In[15] a method of extending the quadratic programming prob-
lem to multi-class problems is presented, although the results pre-
sented suggest that it performs no better than the more ad-hoc
methods of building multi-class classifiers from sets of two-class
classifiers.

3. VOWEL CLASSIFICATION

Our preliminary experiments focus on vowel classification tasks,
based on the Deterding [11] and Peterson and Barney [10] data
sets. There are two advantages of starting with vowel classifica-
tion tasks. Firstly the problem is small — the data is low dimen-
sional, there are only ten classes to choose between, and there are
a relatively small number of training samples. Secondly, vowels
do not vary much in time, and we can therefore characterize them
easily with a vector of fixed length. For example, the vowels are
characterized by their four formant frequencies in the Peterson and
Barney data, and by ten LPC reflection coefficients in the Deterd-
ing data set.

To provide a comparison point with SVMs we provide re-
sults of experiments performed with mixtures of Gaussians. The
Gaussians were initialized with tikemeans algorithm which pro-
vided a starting point for the well-known expectation maximiza-
tion (EM) algorithm [2]. The EM algorithm was trained until con-
vergence of the log likelihood was achieved. The covariances in



the Gaussians were modeled with diagonal matrices. Our baselineclassifiers, however, we must encode the waveform information
classification results with Gaussian mixture models w2é % in a fixed-length vector. Furthermore, unlike the case of vowel
accuracy for the Deterding data using 16 Gaussians per class, andlassification, it is not sufficient to take a sample at one point in
81.7% accuracy for the Peterson and Barney set using 3 Gaussianshe example, as phones other than vowels can vary significantly in
per class. time, and it is often these time-varying dynamic patterns that are
Table 1 presents our results using SVMs on the vowel classi- critical in performing classification.
fication tasks, using both a polynomial kernel of degree 4 and an ~ We chose a simple method of encoding the variable length seg-
RBF kernel. We have investigated constructing multi-class classi- ment information in a vector of fixed length. We converted the
fiers using a one vs. all approach and a one vs. one approach.  utterances from their waveform representation into a sequence of
13 dimensional mel cepstral feature vectors, their time derivatives

[ DataSet | Kemel | Mulii-class | Accuracy | and second_ orde_r derivatives. The_ cepstra and its time derivatives
Deterding | Polynomial | one vs. al 52.9% were c_omblned into a 39 dlmenS|or_1aI vector. For our cepstral
Deterding | Polynomial | one vs. one| 60.4% analysis we used a 25.5 ms Hammlng_ window shlft'ed every 10
Deterding RBE one vs_ all 66.1% ms. Each phone segment was broken into th_ree regions in the ra-
Deterding RBE ONe VS -one 70'0% tio _3-4-3. The 39 dlmensmna_l vectors belongl_ng to _each of these

; - =5 regions were averaged resulting in three 39 dimensional véctors

PB Polynom!al one vs. al 77'90/0 In addition, the 39 dimensional vectors belonging to a window re-
PB Polynomial | one vs.one| 84.5% gion centered at the start of the phonetic segments and with a 40
PB RBF onevs.all | 79.6% ms width were averaged, resulting in another 39 dimensional vec-
PB RBF onevs.one| 85.3% tor. The same was done for a window centered at the end of the
o segment. One additional feature indicating the log-duration of the
Table 1: Vowel classification results phone segment was added. This resulted in a vector with 196 com-

ponents.

The results of using SVM classifiers with various kernel func-

The results are extremely encouraging. Not only do the SVM tions to perform phonetic classification are shown in Table 2. In
classifiers perform comparably with the Gaussian classifiers (andorder to provide a comparison point we conducted experiments us-

better in many cases), but they perform significantly better than ing Gaussian mixture models. The initialization and training algo-
previously reported results using neural network classifiers for the rithms used to learn the parameters of the Gaussian mixtures were
Deterding data [1f] Furthermore, our results on the Peterson the same as those used in the vowel classification experiments.
and Barney data compare favorably to previously reported resultsysing 64 diagonal covariance Gaussians per class we obtained a

[7,13]. classification accuracy of 73.7%.

Other conclusions which can be drawn from these results are
that the RBF kernel outperforms the polynomial kernel, and that Kernel SVM
constructing multi-class classifiers from a set of one vs. one classi- Function Accuracy
fig?_rs yields better performance than using a set of one vs. all clas- Polynomial degree 3| 76.4%
sifiers.

Polynomial degree 4| 77.1%
Polynomial degree 5| 77.6%
4. TIMIT EXPERIMENTS Polynomial degree 6] 77.0%
Radial Basis Functior] 76.3%

To test the performance of SVMs on a more difficult task we used
the TIMIT database [3]. Training was performed on the ‘sx’ and Table 2: TIMIT phonetic classification results

‘si’ training sentences. These create a training set with 3696 utter-

ances from 168 different speakers. For testing we chose the core

set. It consists of 192 utterances from 24 different speakers notin-  These results show that SVMs perform significantly better than
cluded in the training set. All utterances contain labels indicating the Gaussian classifiers. Furthermore, the results are competitive
the phone identity and the starting and ending time of each phone.with current state-of-the-art performance in phonetic classification
The standard Kai-Fu Lee clustering [8] was used, resulting in a setysing this data set [5, 16]. It is also interesting to note that the

of 39 phones. choice of kernel function does not have a major impact on accu-
All of our experiments on the TIMIT database were conducted racy.

by constructing multi-class classifiers using one vs. one classi-
fiers. This was principally motivated by the fact that they had been
shown to perform better than one vs. all classifiers on the vowel

;:Ia?rs],!flcaglo_n tasks_. There were, hcl)we\_/]gr, otherk praCt'Cﬁl. 'Z.SggsThe results given in the previous sections show that support vector
orlt IS choice Blusmg or|1|e VS. %nﬁ c asstlhlers maxes eZCCP”L]J t'Y' “machines can perform well on phonetic classification tasks. How-
ualtraining probiém smaller, and hence the memory an IM€ever, a number of obstacles remain before they can be useful in the

required to train each classifier is greatly reduced. While using a ;o tet of continuous speech recognition. This section explores
one vs. all approa_lch requires many fewer cla_s_S|f|ers to be tralned’these issues, and discusses how they might be resolved.
the memory requirements to train each classifier were found to be

prohibitive.

The key problem with conducting classification experiments >-1. Context-dependent models
Wlth theTlMlT database |.S that the Segments that we are Seek|ng|t iS We” estab”shed tha’[ many phones Vary great|y When they
to classify are not of a uniform length. In order to use the SVM qccur in different phonetic contexts. Current speech recognition

5. CONTINUOUS SPEECH RECOGNITION

1our results here are consistent with those presented in [4] 2This mirrors the acoustic representation reported in [5].
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