
FPGA IMPLEMENTATION OF ADAPTIVE TEMPORAL
KALMAN FILTER FOR REAL TIME VIDEO FILTERING

Robert D. Turney+ , Ali M. Reza∗ , and Justin G. R. Delva∗

+ CORE Solutions Group, Xilinx
San Jose, CA 95124-3450, USA

∗ Department of Electrical Engineering and Computer Science, UWM
Milwaukee, Wisconsin 53201-0784, USA

ABSTRACT
 Filtering noise in real-time image sequences is required in
some applications like medical imaging. The optimum approach
in this case is in the form of adaptive 3-D spatial-temporal filter,
which is generally very complex and prohibitive for real-time
implementation. Independent processing of the image sequences,
in spatial and temporal domains can resolve some of these
implementation difficulties. Some of the existing spatial filters
can easily be modified for real-time implementation. Adaptive
temporal filters, however, are more involved. In this paper, an
adaptive temporal filter is proposed that lend itself to hardware
implementation for real-time temporal processing of image
sequences. The proposed algorithm is based on adaptive Kalman
filtering which is relatively simple and effective in its
performance. Adaptation in this case is with respect to motion in
the image sequence as well as variation of noise statistics. An
efficient hardware implementation of this algorithm, based on
FPGA technology, is proposed.

1. INTRODUCTION

 The problem that is addressed in this study is the
degradation of image sequences due to noise that is usually
incurred during image acquisition process. Design of the
optimum noise filter can only be based on the assumption
that the image sequence and noise are stationary and their
statistics are known. Statistics of image sequences and
noise can be estimated if these signals are really stationary.
In practice, however, this assumption is not valid and only
adaptive algorithm can be utilized. General adaptive 3-D
spatial-temporal filters are very complex and prohibitive
for real-time implementation[1]. A more practical
approach would be to process each frame independently by
using an adaptive spatial filter and to filter each pixel in
time domain by using an adaptive temporal algorithm.
Some of the existing adaptive and/or robust (nonlinear)
spatial filters can easily be modified for real-time
implementation. Adaptive temporal filters, however, are
more involved and require more hardware resources. In
this case, application of a simple low-pass filter results into
a peculiar lagging or ghosting effect that is due to the
filtering of high frequency components (motion) in the
temporal domain. Adaptation in time therefore not only
requires estimation of the noise statistics but also a means
to control the level of filtering when there is a motion

associated to the corresponding pixel in the image
sequence.

The general problem of adaptive filters is discussed
in[2] and in particular some relevant algorithms for
adaptive spatial-temporal noise filtering for video images
are reviewed in [1]. Conventional approach in designing
optimum filters is to use minimization of the mean-square-
error (MSE) which results in Wiener filter for stationary
signals and recursive Kalman filters for signals with time-
varying statistics[3]. In this case, due to the real-time
processing requirement and the fact that there is no linear
phase restriction on temporal filters, recursive filters are
the only feasible solutions. It is therefore of interest to
develop an adaptive Kalman filter that can adjust its
parameters based on the variations in the noise statistics
and detection of motions in the image sequence. In the next
section, a relatively simple but effective adaptive Kalman
filtering algorithm for temporal filtering of image
sequences is proposed which addresses some of the desired
implementation requirements.

2. ADAPTIVE TEMPORAL FILTER

One important factor for adaptive filtering of video
images is to find an algorithm that has acceptable
performance and can lend itself to a real-time
implementation. Wiener filter approach and general
discrete recursive Kalman filtering both have same steady-
state solution if the signal and noise are stationary. In the
case of time varying statistics, Kalman filter would be the
suitable approach. In practice, however, not only the signal
and noise are non-stationary but also their statistics are
unknown. Adaptive filters are based on dynamically
adjusting the parameters of the supposedly optimum filter
based on the estimates of the unknown parameters.
Adaptive Kalman filter can be based on an on-line
estimation of motion as well as the signal and noise
statistics available data.

Let)(kx represent a pixel grayscale on frame k . The
ideal noise-free pixel value is represented by)(ks which is
assumed to be a first-order AR model. This is a more
realistic and simple model that is usually used to represent
the temporal behavior of pixels in video signals[1]. Under

this assumption, the process and measurement equations
are:
1. The process model is)()()1(kwkasks +=+ , in which
a is a constant that depends on the signal statistics and

)(kw is the process noise (assumed to be a white
independent zero mean Gaussian random process with

variance of 2
wσ).

2. The measurement signal is)()()(kvkskx += in which
)(kv is the independent additive zero mean Gaussian white

noise with variance of 2
vσ .

Here it is implicitly assumed that the noise and signal
are stationary random processes that are fully determined
by their second-order statistics. Although this assumption
is not true in practice, but for local statistics, it can safely
be used with some approximation. The recursive Kalman
filter is developed based on the following definitions:

1. The filter output is represented by)(ky which is the
estimate of the signal, at time k .
2. Variance of the estimation error is theoretically

defined by []{ }22)()()(kskyEk −=σ , which is initially

unknown.
3. Kalman filter gain is represented by)(kΚ .
The overall Kalman filter algorithm is then given as
follows:

Algorithm A

 Let 0)1(=−y , and 22)1(vσσ =− , and start by setting

0=k
LOOP: for k do the following operations:

2222

222

)1(

)1(
)(

vw

w

ka

ka
k

σσσ
σσ
++−

+−
=Κ

[])1()(1)()()(−⋅Κ−⋅+⋅Κ= kykakxkky

[] 2222)1()(1)(wkkak σσσ +−Κ−=
Increment k , 1+← kk , and go back to

LOOP
END

In this algorithm, there are several parameters, which

are unknown in practice. These parameters are, 2
vσ , 2

wσ ,

and a . The algorithm can be made adaptive by properly
estimating these parameters, using local information.
Estimation of these parameters can be based on
optimization of a criterion function like minimum mean-
square error (MMSE). No matter which estimation
technique is used, the quality or reliability of the estimates
will always depend on the length of data used to estimate
them. Based on the aforementioned assumptions, the
following instantaneous estimates can be used to achieve
fast and simple implementation:

1. Parameter a , defined by { } { })()1()(2 kxEkxkxE − , can

be estimated by using ())1()()1()(ˆ 22
2
1 −+−= kxkxkxkxa .

For stability reasons it is suggested to use some a priori
information about the signal and keep this parameter
constant.

2. Simple estimates of []{ }22)1(ˆ)(−−= kyakxEvσ , as well

as []{ }22)1(ˆ)(−−= kyakyEwσ , are calculated, in turn, by

[]22)1(ˆ)(ˆ −−= kyakxvσ and [] 2222 ˆ)1(ˆ)(ˆ vw kyaky σσ Κ=−−= .

The advantage of the adaptive algorithm is that the
Kalman gain starts with relatively large values, and
gradually decreases when the temporal signal is stationary.
This is a desired property, which produces more noise
filtering as time advances. However, when there is a

motion, estimates of the noise and process variances, 2ˆvσ

and 2ˆ wσ , increase which results in less filtering of the

signal. This will reduce the noise filtering so that it can
better follow the motion with minimal lagging effect.

In this adaptation, there is still no explicit way of
estimating the motion. One approach to motion estimation
is to compare two consecutive temporal samples and use
their magnitude difference to infer existence or
nonexistence of motion. This estimation can be conducted
by using a statistical test based on the assumption of white
Gaussian noise[4]. For example, when there is a sudden
change in the signal, the difference between)1(−kay and

)(kx , with a given confidence level, goes beyond its
statistical variation. In this case, a simple test can be used
to estimate sudden changes (motion) in the signal.

Assuming that 2
vσ represents the variance of the

aforementioned differences, then based on Gaussian noise
distribution, it can be said that a motion is present if

Γ≥−−= vkaykx σγ)1()(. If the test is positive, then the

gain calculation in the Kalman filter can be reinitiated by

assuming 22)(vk σσ = . The new gain value significantly

reduces the lagging effect while improves the noise
filtering. Other modifications can also be utilized. For
example, we can set the Kalman gain equal to 1 and
reinitiate the filtering right after the motion. Or set both

)(2 kσ and 2
wσ equal to 2

vσ and initiate the Kalman gain to

() ()21)(22 ++=Κ aak right after the motion.

The overall algorithm is represented is presented as
follows:

Algorithm B

Let 0)1(=−y , 22
vw σσ = , and 22

vσσ = , and start the

loop by setting 0=k
LOOP: for k do the following operations:

222

22

vw

w

σσσ
σσ
++

+
=Κ ;

())1(1)()(−Κ−+⋅Κ= kykxky ; or
[])1()()1()(−−Κ+−= kykxkyky ;

if Γ≥
−−

=
v

kykx
D

σ
)1()(

,

22
vw σσ = ;
22
vσσ = ;

else
22
vw σσ Κ= ;

() 222 1 wσσσ +Κ−← ;

end-if
Increment k , 1+← kk , and go back to LOOP

END

Selection of the threshold Γ is very important. In this

case, it can be shown that 2γ has 2χ distribution with one
degree of freedom[4]. For the purpose of statistical test of
hypothesis, different values of Γ , for different confidence
level, are tabulated in Table I. Proper use of these values
will result in the same confidence level as stated in [4]. In
other words, if the noise is white and independent from
signal, using 95% confidence level will produce only 5%
error, in average, when it is applied in motion detection. In
Figure 1, the Kalman filter with motion detection is
compared with the standard non-adaptive optimum Kalman
filter by simulating a sudden change in the signal to
represent motion. In this case the SNR is set to 20dB. In
this simulation, the confidence level is kept at the highest
level; namely 99.9% (29.3=Γ).

Table I: Threshold values for
Motion detection

Confidence Level Γ2 Γ
99.90% 10.827 3.29

99% 6.635 2.576
98% 5.412 2.326
95% 3.841 1.96
90% 2.706 1.645

In any given application, the user should provide a

reasonable value for 2
vσ based on his or her a priori

information. As it is evident, higher confidence level
results in a better performance. It should be emphasized
that this approach is sensitive to impulsive noise and
assigns an impulsive noise to a motion. Using local spatial

filtering can minimize the problem of impulsive noise. In
other words, instead of using original frames, we can use
spatially filtered version of that frame sequence just for the
purpose of motion detection. The problem of impulsive
noise can also be resolved by using some form of nonlinear
filter.

0 50 100 150 200
-4

-2

0

2

4

6

8

10

12

14

 Non-adaptive

 Kalman filter with motion detection

 Noisy
 signal

Figure 1- The result of Kalman filtering, using motion
detection, in comparison with non-adaptive filtering
when SNR is 20dB and Γ=3.29.

3. FPGA IMPLEMENTATION

 The implementation of the adaptive Kalman filter is
performed with standard memory components and a Xilinx
FPGA. Memory components are used for frame and
parameter buffers while the FPGA is used for pixel and
parameter calculations. The system architecture shown in
Figure 2 illustrates three input buffers holding)1(−ky ,

2σ , 2
wσ , and a Xilinx implementation to calculate

updated values for these buffers in addition to generating
the proper output)(ky . The system can easily operate at
a 66 Mhz clock enabling 1024x1024 60 Frames/s
operation. System clock rates of 80 Mhz and 100 Mhz can
also be achieved for more aggressive system bandwidth
requirements.
 The pixel calculation data path for)(ky is straight
forward once the K parameter is calculated. The parallel
pipelined structure used for the sample processing
algorithm involves pre-subtraction, two input variable
multiplier and post-addition as shown in Figure 3. After
the initial latency a sample)(ky is output every system
clock. Hardware resources to perform this data path
operation is approximately 458 Logic Cells.
 The parameter calculation is more involved and also
requires a parallel pipelined structure for sample
processing since each pixel in the frame also has

parameters 2σ and 2
wσ . The algorithm requires pre-

addition and division for the K parameter calculation. To

perform the comparison for the inequality we can

normalize for vσ and define D’ and Γ’.

 Video
 Buffer

XILINX
 FPGA

 σ2

 BUF

 2

w
σ

 BUF

 y(k-1)
 BUF

 X(k)

Figure 2- System level implementation for Kalman
filtering.

 +
 *

 K

 X(k)

 y(k-1) -

 y(k)

Figure 3- Pixel Calculation implementation for Kalman
filtering.

 Using a 2’s complement function on)1()(−− kykx from
the pixel calculation, we derive the necessary signal for the
2x1 mux parameter selection. The calculation of new
parameters involves an adder, subtracter, variable
multiplier and loadable constant coefficient multiplier as
shown in Figure 4. After initial latency a new updated
parameter is given every system clock. The pixel and
parameter calculation blocks are latency synchronized such
that K and)1()(−− kykx are properly aligned. The output
and parameters are aligned such that one memory
controller can handle reads and writes to input buffers.
Hardware resources for the parameter calculation is
approximately 1664 Logic Cells.

 > Γ ` + + +
 A/B
 K

 σ2 2

w
σ 2

v
σ

 * *

 2x1 2x1

 +

x(k)-y(k-1)

 Figure 4- Parameter Calculation implementation for
Kalman filtering.

 The total hardware resources for the FPGA is 2122 Logic
Cells allowing for a Xilinx XC4036XLA or XCV50 to be
used for implementation of the Kalman filtering operation.
Extensive use of Xilinx Smart-IP available in the
COREGEN tool allowed for optimal performance and
shortened design cycle.

4. CONCLUSION

 General problem of video image filtering has been
discussed and some simulation results have been
presented. VLSI implementation of the developed
algorithm, using Xilinx FPGA has been presented. It
should be understood that if there is an impulsive noise in
the image sequence, this Kalman filter algorithm should be
used in conjunction with pre-spatially non-linear filtered
frames.

5. REFERENCES

[1] J. C. Braileam, R.P. Kleihorst, S. Efstratiadis, A. K.
Katsaggelos, and R.L. Lagendijk, “Noise reduction
filters for dynamic image sequences: A review,”
Proceedings of The IEEE, vol. 83, no. 9, September
1995.

[2] S. Haykin, Adaptive Filter Theory, 3rd Ed., Prentice
Hall, New Jersey, 1996.

[3] R. G. Brown and P. Y. C. Hwang, Introduction to
Random Signals and Applied Kalman Filtering, 3rd

Ed., John Wiley and Sons, New York, 1997.
[4] R. E. Kirk, Statistics, An Introduction, 3rd Ed., Holt,

Rinehart and Winston, Inc., Texas, 1990.

