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ABSTRACT

This paper summarizes the work of the “Rapid Speech Recognizer
Adaptation” team in the workshop held at Johns Hopkins Univer-
sity in the summer of 1998. The project addressed the modeling
of dependencies between units of speech with the goal of making
more effective use of small amounts of data for speaker adaptation.
A variety of methods were investigated and their effectiveness in
a rapid adaptation task defined on the SWITCHBOARD conversa-
tional speech corpus is reported.

1. INTRODUCTION

Humans have little difficulty recognizing speech in noisy envi-
ronments, speech distorted by having passed through an unknown
channel or speech from nonnative speakers. We adapt to the char-
acteristics of the new speech, often after hearing only a few sec-
onds of it and a subset of the sounds, by exploiting relationships
between various sounds. In this project, the participants alleviated
the commonly used remedy of tying, or forcing to be identical,
the transformations of the models of related speech units. The
team followed an alternative approach, modeling the dependen-
cies between the speech units, so that the model transformation
for one unit influences but is not necessarily identical to the trans-
formation for another unit. We used this knowledge to transform
each model individually without requiring a large sample of each
speech segment for adaptation. To estimate the dependencies be-
tween different speech units, we used a large corpus of training
speakers and a variety of correlation modeling techniques that in-
cluded Markov Random Fields, explicit correlation models, and
tree-structured models.

Constrained estimation of hidden Markov models (HMMs) is
currently the method of choice for adaptation by most researchers
and is briefly reviewed in Section 2. In Section 3 we describe the
techniques we explored in the project for modeling the dependen-
cies between parameters of the transformation biases, and in Sec-
tion 4 we present two approaches for rapid adaptation using more
general transformations. Experimental results on the Switchboard
corpus are presented in Section 5, and we conclude in Section 6.

2. CONSTRAINED-ESTIMATION ADAPTATION

A family of adaptation algorithms [3, 6, 8] for continuous mix-
ture density HMMs is based on constrained reestimation of the
mixture Gaussians. Maximum likelihood (ML) reestimation of the
Gaussians in all these adaptation schemes is performed using the
expectation-maximization (EM) algorithm.

The observation densities of the speaker-independent (SI) HMMs
have the formPSI(xtjst) =

PN!

i=1
p(!ijst)N(xt;�sti;�sti),

wherext is the observed feature vector at timet, st is the HMM

state at timet, !i denotes the event that thei-th Gaussian mixture
of statest was used at timet, andN! is the number of compo-
nent Gaussians in the mixture density.N(xt;�sti;�sti) is the
multivariate normal density with mean vector�sti and covariance
matrix�sti.

Examples of estimation constraints are that the speaker-adapted
(SA) means and covariances [3], or simply the means in theMLLR
method [6] are obtained from the SI ones through an affine trans-
formation. The transformations are shared among states that are
clustered together based on their similarity, as specified by the in-
dexg = (st). In our work we used several special cases of the
following general model for constrained-estimation adaptation

PSA(xtjst) =

N!X

i=1

p(!ijst)N(xt;Ag�sti + bg0 ;�sti): (1)

By forcing g = g0 we obtain the usual MLLR adaptation. The
number of parameters that must be estimated can be reduced by us-
ing astructuredtransform, in which the parts of the mean vectors
corresponding to the cepstrum and its derivatives are transformed
independently using a block-diagonal matrix. A simpler constraint
is the simplebiastransform, obtained by forcingAg = I, the iden-
tity matrix. This type of transform is not as powerful as MLLR,
but it is easier to model dependencies of simple biases, as we shall
see in Section 3. To retain the modeling capability of the affine
transform, and at the same time model dependencies between the
transforms of different units, we developed in the workshop acas-
cade transformation, where the transformation components with
more parameters are tied more aggressively and the clustersg0 are
a further refinement of the clustersg.

3. DEPENDENCY MODELING OF BIAS TRANSFORMS

In rapid adaptation, where a very small amount of speech is avail-
able for adaptation, many of the classes that share the same trans-
formation will be either unseen or have insufficient data to ro-
bustly estimate their transformation. To predict the transforma-
tions of missing classes, as well as smooth the transformations of
classes with insufficient data, we use dependency modeling. In
this approach, the dependencies between the parameters of dif-
ferent classes are first estimated from a large number of training
speakers. During adaptation, the transformation parameters of the
classes that are seen in the adaptation data are estimated using stan-
dard ML techniques. These parameters are then smoothed, and the
missing-class parameters are predicted from the seen ones using
the dependency model that was estimated from the training speak-
ers. Finally, the interpolated and smoothed parameters are used to
transform the HMMs.

In the workshop we experimented with a number of differ-
ent dependency models, including Tree-structured models, explicit



correlation schemes and Markov Random fields that are explained
in the remainder of this section.

3.1. Tree-structured Correlation Methods

Multiscale Tree Models: Multiscale stochastic processes based
on scale-recursive dynamics on trees [1, 7, 5] are a generalization
of linear dynamical systems that evolve on a tree, rather than in
time. These models allow efficient algorithms for both estimation
and likelihood calculation resulting in a variety of applications. A
tree is defined with the biases at the leaves and a multiscale process
on the tree specifies the joint distribution of the leaves.

Given a tree topology, the process parameters, and the set of all
available observations (ML estimates and errors for the observed
biases computed at each leaf independently), MMSE smoothed es-
timates of the bias and associated error covariance can be com-
puted in a recursive but non-iterative manner [1]. The smoothed
bias estimates at the leaves are then used to adapt the models
within that class. Given a tree topology and observations from
training data, the parameters of the tree can be estimated using an
EM algorithm [5].
Tree Structured MAP Adaptation: Another tree-based Bayesian
approach to adaptation, called structural MAP (SMAP) was pre-
sented in [10] and we implemented this approach for biases as
a comparative exercise due to its similarity with the multiscale
model. In the upward sweep of the SMAP, estimates of all parents
are computed by aggregating ML estimates of the biases from the
leaves. Once the aggregate bias at a parent is estimated, it serves
as the prior for its immediate children. Details of the formalism
are available in [10].

Qualitatively, the SMAP methodologyimposes(or permits the
designer to hand-craft) the dependence behavior between the bi-
ases through the choice of some hyperparameters, while the mul-
tiscale approach estimates the dependence structure from training
data. On a quantitative note, the upward sweep of the SMAP is the
same as the upward sweep of the multiscale model for a noiseless
evolution withA = I. The downward pass of SMAP combines
the parent’s estimate with the child’s ML estimate using an ad-hoc
procedure while the downward pass of the multiscale model does
an optimal fusion of information (MMSE for Gaussians) [10, 1].

3.2. Explicit Correlation Methods

The novelty here is to use a prediction model of the biases of the
cascade system (1), thus combiningMLLR adaptation and cor-
relation modeling, on the hypothesis that the residual error of the
transformed Gaussian means are correlated. The statistics of cor-
responding component pairs in different bias vectors are assumed
bivariate Gaussians, and estimated from the training data. Dur-
ing adaptation, we use linear regression to predict the bias compo-
nentsbk from observed componentbj : b̂k=j = �k;j bj + �k;j .
The predictorŝbk=j , such that the correlation�k;j exceeds a given
threshold, are then interpolated according to ML estimation:

^̂
bk =

X

j

wj b̂k=j ; wj /
1:0

�2
b̂k=bj

(2)

^̂
b̂k = S bk + (1� S)

^̂
bk: (3)

where�2
b̂k=bj

is the variance of estimator̂bk=j . We use (2) both

to estimate the biases unseen in the adaptation data, and to smooth
the estimated biasesbk (seen data), as in (3).

3.3. Markov Random Fields

Markov Random Fields (MRFs) were first used in modeling de-
pendencies of the Gaussian means in [9]. Here, we used MRFs to
model dependencies between the biases of the cascade and simple-
bias transformations. Despite the elegant theory behind MRFs,
their application to correlation modeling for adaptation boils down
to an implementation that is very similar to the explicit correlation
techniques. The main difference is that smoothing of seen biases
and prediction of unseen biases is done jointly in an iterative fash-
ion, where the current estimates of the biases are used to obtain
new estimates for both the seen and unseen classes. MRFs, SMAP
and multiscale trees are all Bayesian schemes, in the broad sense
of the term, and the main difference is in the form of the prior dis-
tributions. Moreover, it has been shown that MRFs and multiscale
trees are equivalent [7].

4. ROBUST ESTIMATION OF TRANSFORM MATRICES

4.1. Adaptation Using Basis-Transforms

The number of transform parameters to be estimated in the MLLR
adaptation method is9D2+3D, whereD is the dimensionality of
the cepstrum feature vector. To address the difficulty of estimating
so many parameters, we are studying a method based on “basis
transforms”. Here we assume a set ofN basis transforms that
have been estimated from a large amount of training data. Each
speakerS is represented by a set ofN weights�Si ; i = 1; : : : ; N ,
that are used to appropriately combine these basis transforms to
create a speaker-specific model. Thus we only need to estimate on
the order of 10 to 50 weights for each test speaker.

The basis transforms can be combined in two ways.Trans-
form combinationhas been described in [4]. In another approach,
which we calldensity combination, the state conditional densities
induced by each basis transform are linearly combined to produce
the densities for the test speaker. This is similar in spirit to ML
Stochastic Transforms [2]. Evaluation of the density-combination
approach on the workshop task is in progress.

4.2. Discounted-Likelihood Estimation of Transforms

The techniques discussed thus far employ constrained transforma-
tions because they require relatively little adaptation data. If more
powerful transforms could be found from the same amount of data,
they might perform better than these simple transformations. A ro-
bust iterative MLLR procedure is proposed. Iterative MLLR yields
multiple transforms by repeatedly estimating transforms and refin-
ing the regression classes; this is more effective than training a
large numbers of transforms from scratch. The intent is to modify
this procedure so that the regression class statistics can be found
robustly.

A variant of the EM algorithm that maximizes adiscounted
likelihood criterion [11] is applied to this problem. The modifi-
cation derives from aconfidencescale factorc 2 [0; 1] incorpo-
rated into the likelihood criterion. The M-Step is unchanged, but
the statistics found by the E-Step are interpolated with those used
by the M-Step at the previous iteration. The effect is to slow the
convergence of the training procedure if there is insufficient data;
convergence is discussed in [12].

To use this algorithm for iterative MLLR, a refinement of the
regression classes can be performed at each iteration so (i) class-
specific transforms are initialized by their parent transform and (ii)



statistics found for each class are interpolated with those used to
find the parent transform1. If the weightc � 1, the children
will have transforms identical to those of their parents. There are
many possible implementations of this. Two procedures are given
that employ only one reestimation of the statistics.

Suppose a global MLLR transformW (1) (incorporating rota-
tion and shift) has been computed. Using this global transform,
adapted means� and new statistics can be found. The transform
W (2) for a class of statesC can be found as theW that satisfies a
modified MLLR reestimation criterion [6]:
P

s
K1(s)�

�1
s s~�s�̂

0

s =
P

s
K1(s) s �

�1
s W�̂s�̂

0

s

K1(s) = c1 1C(s) + 1� c1
(4)

where~� is the usual EM mean reestimate and�̂ = [1 �]0. For
c1 = 0, all states contribute to the update so thatW (2) is a two-
iteration estimate of the global transform. Ifc1 = 1, W (2) is a
class-specific transform initialized from the global transform. For
other values ofc1, W (2) is something between the two. In effect,
c1 specifies the confidence with which a unique transform can be
estimated for classC.

Consider next a set of statesC0 � C for which a transform
W (3) is to be estimated in a ’smooth manner’ fromW (2). The new
transform is found to satisfy a modified (4), in which the statistics
remain those found underW (1); � are means transformed byW (2)

andW (1); andK2(s) = c2 1C0 (s) + (1 � c2)K1(s) replaces
K1(s). For c2 = 0, this criterion becomes (4) so thatW (3) is
(nearly) an identity transform. Estimation ofW (3) can therefore
relax gradually back to the robustly estimated parent transforms.

5. EVALUATION ON THE SWITCHBOARD CORPUS

5.1. Task Definition and Baseline Results

We used the Switchboard database to evaluate the various adapta-
tion methods.Transcription-modeadaptation has been previously
applied to this task, by adapting the recognizer to the same data
that it is being tested. This, of course, is done in unsupervised
mode (i.e. without using knowledge about what has been said). In
our work, however, we wanted to be able to evaluate in both un-
supervised and supervised modes, since the error rates in Switch-
board high. When these two benchmarks are different, supervised
mode allows us to better evaluate the adaptation-rate characteris-
tics of an algorithm. Supervised performance can be evaluated
in batch-modeadaptation, where we adapt using speech different
from the test data.

We evaluated rapid adaptation using two batch-mode bench-
marks, with 30 and 60 seconds of speech, respectively. The two
benchmarks were defined on the 1997 summer-workshop develop-
ment set by equally splitting the speech of each conversation side
into two parts, adapting on the first 30 or 60 seconds of each part,
and testing on the other half. The complete definition of the task
can be found on the 1998 Workshop web site [13]. The SI system2

was a speaker- and gender-independent context-dependent HMM
system. The speaker-independent performance of this system on
the development set was 45.3%. After optimizing the number of
transformations, the cascade-transformation outperformed slightly

1M. Gales reports that similar Bayesian formulations are possible.
2The system was trained with 60 hours of per-utterance cepstral-mean

normalized speech, and the adaptation experiments were done by rescoring
lattices created with a 22,000 bigram language model.

the standard block-diagonal MLLR with word-error rates of 42.6%
(30” unsupervised), 42.0% (30” supervised), 41.4% (60” unsuper-
vised) and 40.2% (60” supervised).

In addition, we evaluated the adaptation performance of three
cases: two simple-bias transforms with 150 and 250 classes, re-
spectively, and one for a cascaded transform with one global MLLR
transformation 150 classes for the biases. These configurations
were used in the dependency-modeling experiments described be-
low. The corresponding recognition results using the ML estimates
of the biases for the four different benchmarks are summarized in
Table 1.

5.2. Tree-structured Correlation Methods

Multiscale Tree Models: Multiscale tree models of dependence
are presented for three cases: two to estimate biases and one to es-
timate cascaded biases in conjunction with a global MLLR trans-
form. The Gaussian densities in the system were divided into ei-
ther 150 (or 250) classes and ML estimates of the class-biases or
cascaded class-biases were obtained for the nearly 3000 conversa-
tion sides in the acoustic training corpus. These were used to train
dependence models for the different systems For the test speakers,
ML estimates of the corresponding biases were obtained for those
classes which had sufficient data, and the multiscale tree mod-
els were used to obtain smoothed estimates of all the 150 (250)
class biases. Table 1 shows the results of smoothing the biases or
cascaded-bias transforms using multiscale tree models. The per-
formance of the ML estimates of the corresponding biases (before
smoothing) are also shown for comparison. The WER of the un-
adapted system is 45.2%. It is interesting to note that even with
less data (30 sec) smoothing of the 250 biases is as good as that of
150 - in accordance with the multiscale theory.

Mode and 150-bias 250-bias 150-casc.
Dur (sec.) ML MS ML MS ML MS

Sup (30) 44.3 43.2 44.9 43.0 41.7 41.2
Unsup (30) 45.0 43.8 45.5 44.1 43.2 42.3
Sup (60) 42.9 42.1 43.0 42.1 40.2 40.0
Unsup (60) 44.6 43.6 44.5 43.2 42.2 41.8

Table 1: Recognition WER (%) for smoothing ML estimates of
class-biases using multiscale tree models (MS)

Tree Structured MAP Adaptation: Recognition results are pre-
sented for the SMAP scheme with three different settings of the
hyperparameters (� ). In the first two cases, we used a constant
value of� (1 and 10) for each level in the tree, and in the third
case� increased from0:3 at the root to10 at the leaves, indicat-
ing high faith in the ML estimate of the aggregate (class) bias at
the root and relatively less confidence in the detailed ML estimate
of the bias of the individual Gaussian components. Table 2 shows
the performance of the SMAP technique. The variable-� case is
indicated by� = 0:3. The performance of ML bias adaptation
and that of the multiscale tree model of biases with 250 classes is
shown alongside.3

3Due to limitations in available software our comparison of the two
schemes is not quite exact. The SMAP scheme was implemented com-
ponentwise in the bias vectors, while the multiscale model has been im-
plemented with full error covariances estimated across training speakers
instead of using true error covariances of the biases.



Mode and 250 SMAP with� = 250
Dur (sec.) ML 1.0 10.0 0.3 MS

Sup (30) 44.9 44.0 43.8 43.2 43.0
Unsup (30) 45.5 45.4 44.8 44.5 44.1
Sup (60) 43.0 43.3 43.2 42.2 42.1
Unsup (60) 44.5 45.5 44.7 44.5 43.2

Table 2: Recognition WER (%) for 250-class ML biases, SMAP
adaptation and 250-class multiscale tree models (MS)

5.3. Explicit Correlation Methods

We have applied the correlation model (2 to the cascade system
(1) with one transform and 150 biases.The results in Table 3 show
improvements ranging from 0.3% to 0.9%.

In addition, we evaluated the MRF dependency model for the
bias-transformation systems. The model improved the unsmoothed
biases in all cases, and the results were similar to the multiscale-
tree smoothing results shown in Table 1. Specifically, the 30” and
60” unsupervised benchmarks for the 150-bias configuration gave
a WER of 43.6% and 43.7%, respectively, whereas the correspond-
ing results for the 250-bias system were 43.7% and 43.3%.

Adapt. Adapt. WeightS in (2)
Mode Data 0.8 0.7 0.6 0.5 0.4

Unsup. 30” 42.5 42.3 42.3 42.4 42.5
60” 41.8 41.8 41.8 41.9 42.1

Sup. 30” 41.5 41.4 41.4 41.3 41.3
60” 40.0 39.9 40.0 40.1 40.4

Table 3: Correlation modeling of cascade biases recognition WER.

5.4. Discounted Likelihood Methods

The techniques for the robust estimation of multiple regression
class MLLR transforms proposed in Section 4.2 have been eval-
uated on the unsupervised 60” adaptation task. The baseline 4
MLLR transforms yield a WER of 42.1%. Using the first tech-
nique of Section 4.2, 4 transforms can be found from the global
transform that yield an improved WER of 41.6%. Further gains
are possible by estimating 11 and 20 transforms from these 4 trans-
forms, yielding 1.0% over the baseline 4 transform performance.

Num. Transforms 1 4 11 20
Baseline 42.7 42.1 42.2
c1 = 0:5 42.3
c1 = 0:8 42.0

c1 = c2 = 0:9 41.6 41.1 41.3

Table 4: WER of 60” Discounted Likelihood Full Transforms.
The adaptation procedure behaves as expected: asc decreases, the
4 transform system relaxes towards the performance of the single
transform system. Note also that 11 transforms cannot be well-
estimated in the usual manner on this 60” task (the given result is
from a block diagonal system), whereas even 20 transforms can be
fairly robustly estimated using the newly proposed methods.

6. CONCLUSIONS

Detailed studies of the effectiveness of dependency models for
rapid adaptation are reported. Effective techniques are available
and their effectiveness depends upon the power of the transform
they model. A detailed analysis [13] of ASR performance of these
systems indicates that (i) systems improve almost equally on seen

and unseen words on supervised adaptation, as expected; (ii) in un-
supervised adaption, unseen words also improve, but among seen
words, only correctly adapted words improve.
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