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ABSTRACT

In this paper we consider systems for demodulation/modulation
which use periodically nonuniform sampling (of arbitrary or-
der) of the bandpass signal to circumvent the carrier-frequency
restrictions of uniform sampling. The design of a particular
tapped-delay-line (demodulation) or piecewise-constant-impulse-
response (modulation) equivalent filter determines both the actual
implementation filters and system performance. The tap spacing
of the former and the transition times of the latter are periodically
nonuniform. Following a characterization of the equivalent filter
response, the special case of second-order sampling is examined
for insight into the choice of sampling offset. A set of example de-
signs demonstrates that, while nonuniform sampling permits car-
rier frequencies not allowed with uniform sampling, the resulting
system performance is limited by the choice of carrier frequency.

1. INTRODUCTION

When uniformly spaced complex-envelope samples are derived di-
rectly from an analog bandpass signal through uniform sampling,
carrier-frequency choices are limited. Here periodicallynonuni-
form sampling circumvents those restrictions in both the demodu-
lator and modulator. After describing the systems, we consider the
design of the equivalent filters that are key to their operation.

Figure 1(a) shows a demodulator system based on periodically
nonuniform sampling. The incoming signal is bandpass filtered
and fed toM samplers, each operating at a rate of1=Ts. Sam-
pler m acquires samples at timesZTs � �m, �m 2 R, and
[M�1m=0(ZTs � �m) constitutes the set of all required samples. In
the equivalent, easier-to-analyze system of Fig. 1(b), the complex
tapped-delay-line (TDL) filter impulse responseg(t) has support
on[M�1m=0(ZTs+�m). The filters of Fig. 1(a) are discrete-time ver-
sions of the polyphase components of this single filter asillustrated
in the first four lines of Fig. 2. Figure 3(a) shows the four signals in
Fig. 1(b) (with the two filters considered as a unit). The filter com-
bination recovers and shapes just the positive-frequency portion of
the bandpass input signal prior to frequency shifting and sampling.
(The aliasing is desired for the communication waveform shown,
but in many applications the final sampling rate must be sufficient
to avoid aliasing.)

In the modulation/reconstruction process, the real parts of the
outputs ofM discrete-time filters are nonuniformly interleaved
for D/A conversion and bandpass filtering as shown in Fig. 4(a).
The D/A receives samples from filterm at timesZTs � �m and
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(b) Demodulation using uniform sampling and a
TDL with nonuniformly spaced taps.

Figure 1: Demodulator system (a) is for implementation. Demod-
ulator system (b) is for analysis and design.

outputs a stairstep with periodically nonuniform step widths. The
mathematically equivalent system of Figure 4(b) features a single
equivalent complex piecewise-constant-impulse-response filter re-
lated to the component filters asillustrated in Figure 2. Figure 3(b)
shows representative signals. After the desired spectral component
is shifted to the carrier frequency, the filters must together suppress
the other components (with optional spectral shaping). The band-
pass signal is then just the real part.

Bandpass sampling theory was first advanced for uniform and
second-ordercases [1], then specialized to quadrature sampling [2]
(a special case of second-order sampling for I/Q recovery) and ex-
tended to higher-order periodically nonuniform sampling [3] and
to multiple bands [4]. Systems using these ideas for demodulation
almost always employ uniform and/or quadrature sampling [5–8].
The corresponding modulators [6, 9] are less often discussed.

2. DESIGNING THE NONUNIFORM FILTER

The frequency response of a uniformly spacedTDL filter cannot be
independently specified at frequencies separated by integral multi-
ples of the frequency-response period. What is the corresponding
restriction for the (in general) aperiodic response associated with
periodically nonuniformly spaced taps? It will be convenient to
borrow the concept of analiasfree(f0) zone [4], the spectral sup-
port of a signal which can be sampled at a ratef0 without aliasing.
From a filter viewpoint, analiasfree(f0) zone represents a set of
frequencies on which a periodic frequency response with period
f0 can be independently specified without conflict. SinceF is
aliasfree(f0) if no two frequencies inF are equal modulof0, it
follows thatFm � ff +m(f)f0 : f 2 Fg is alsoaliasfree(f0)
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(a) Example spectra for the demodulator of Fig. 1(b) operating on a communication
waveform, including spectral shaping and symbol-rate sampling.
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(b) Example signal spectra for the modulator of Fig. 4(b).

Figure 3: Spectral descriptions of the demodulation and modulation systems.
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Figure 2: The modulator and demodulator equivalent filters are
each related to (discrete-time representations of) their respective
polyphase component filters as shown. (In general, modulator and
demodulator filters would have different coefficients.)

for any functionm : F !Z.
Suppose the impulse response of a TDL filter has support in

T +Z=f0, whereT is a finite set. Then the frequency response of
the filter can be written

G(f) =
X
�2T

G� (f)e
�j2�f� ;
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(b) Modulation using uniform reconstruction and a
piecewise-constant filter with nonuniformly spaced tran-
sitions

Figure 4: Modulator system (a) is for implementation. Modulator
system (b) is for analysis and design.

where polyphase component filterG� (f) has periodf0. For
integer-valued functionm(f) then,

G(f +m(f)f0) =
X
�2T

G� (f)
m(f)
� e�j2�f� ;

where� = e�j2�fo� . If T = f�0 : : : ; �M�1g, this can be written
simultaneously form(f) = m0(f); : : : ;mM�1(f) as the matrix
equation

0
B@

G(f +m0(f)f0)
...

G(f +mM�1(f)f0)

1
CA = �(f)D(f)

0
B@

G�0 (f)
...

G�M�1 (f)

1
CA ;

(1)



with matrices�(f),D(f) defined as

�(f) =

0
BB@


m0(f)
�0 : : : 

m0(f)
�M�1

...
...


mM�1(f)
�0 : : : 

mM�1(f)
�M�1

1
CCA ;

D(f) =

0
B@

e�j2�f�0

.. .
e�j2�f�M�1

1
CA :

If f is restricted toaliasfree(f0) zoneF , say(�f0=2; f0=2), then
(1) relates the TDL responseG(f) onM aliasfree(f0) frequency-
axis segments to the frequency responses onF of the polyphase
component filtersfG� (f) : � 2 T g. Matrix D(f) is unitary
and hence invertible, so if�(f) is also invertible, then theM
responses of the polyphase component filters can be determined
from theM segment responses of TDL filterG(f). If � is singu-
lar its range space is of dimension less thanM , and some of those
TDL segment responses can be determined from the others; inde-
pendent specification ofG(f) on this family of segments is not
possible. Further, for anyf the ratio of theL2 norm of the vector
of segment responses to theL2 norm of the vector of polyphase-
component responses is bounded between the maximum and min-
imum singular values of�(f). If these values differ widely—
condition number�(�), the ratio of the maximum to minimum
singular value, provides a measure—extreme behavior may be re-
quired of the polyphase component filters in order to effect modest
equivalent-filter behavior. One special case resulting in all singular
values being identical is uniform sampling:�i = i=(Mf0) with
mi(f) = i+ k, for any fixedk 2Z.

The analysis is similar for the piecewise-constant-impulse-
response equivalent modulator filter, except that the matrixD(f)
must incorporate the frequency responses of the D/A hold func-
tions of the various widths. As a result,D(f) becomes singular at
certain frequencies and so cannot be ignored.

Equation (1) is closely related to Eq. (11) of [4], which de-
scribes the condition for exact reconstruction of the sampled ana-
log signal. Here the ideal reconstruction filters have been replaced
by TDL filters, and the ideal composite response by a nonuniform
TDL response, which is to be designed. The analysis above does
not provide a filter-design method, but rather guides the selection
of sampling phases�1; : : : ; �M so that FIR polyphase component
filters of modest lengths will suffice. If the polyphase component
filters are FIR, the frequency responses of the equivalent filters are,
at any particular frequency, linear in the filter coefficients, so the
filters can be designed with linear programming [10], semidefinite
programming [11], or eigenfilter [12] and generalized-eigenfilter
methods [13], for example.

3. A SPECIAL CASE: SECOND-ORDER SAMPLING

Some insight can be gained from analysis of second-order sam-
pling, the simplest type of nonuniform sampling. Without loss of
generality, we can assume that�0 = 0, �1 = � , m0(f) = 0,
andm1(f) = m(f) for f in somealiasfree(f0) zoneF . This

results in�(f) =

�
1 1
1 m(f)

�
with  = e�j2�f0� . The condi-

tion number�(�) is then a function of offset� and integerm(f),
which defines the relationship between the two spectral regions (F
andFm) to be designed. Figure 5 is a plot of the inverse condition
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Figure 5: Inverse condition number of the matrix� vs. sampling
offset� and indexm for the case of second-order sampling. White
indicates a value of 1.

number vs.� (normalized usingf0) andm, with white indicat-
ing the ideal case of unity and black representing a value of zero
(meaning� is singular). Thus, light regions represent good com-
binations of time offset� and relative frequency offsetm.

We can use Fig. 5 to visualize some previous bandpasssampling
theory results. Consider a real bandpass signalX(f) with support
in (�fc � f0=2;�fc + f0=2) [ (fc � f0=2; fc + f0=2), choos-
ingF as the first term of the union, and choosingm(f) such that
Fm is equal to the second term. A value off0� = 0:5 represents
uniform sampling, which is ideal for oddm but results in a sin-
gular� for evenm, corresponding to the integer and half-integer
band-position cases of [3]. For a bandpass signal with carrier fre-
quencyfc a common sampling scheme isquadrature sampling[2],
defined by� 2 2Z+1

4fc
. For fc = mf0=2, this corresponds to the

white peaks of the figure and thus to a unity condition number of
�. Whenfc is not a half-integer multiple off0 the integer func-
tion m(f) becomes piecewise constant, taking on the values of
the two integers nearest to2fc=f0. In this case no value of� can
make�(�) = 1 for all f , and the quadrature sampling choice rep-
resents a compromise of sorts. This suggests that even with an
arbitrary sampling offset, a demodulator can achieve better per-
formance when the carrier frequency and sampling rate are half-
integer related. An example design will help to illustrate.

Consider a second-order bandpass sampling system withfc =
1:7f0, where the TDL filter will be designed to suppress frequen-
cies in the interval[�2:1f0;�1:3f0] � F = (�2:2f0;�1:2f0)
and pass frequencies in[1:3f0; 2:1f0] � Fm = (1:2f0; 2:2f0)
wherem(f) is as shown in Fig. 6 along with a potential input sig-
nal spectrumR(f). The discontinuity inm(f) causes a similar
discontinuity in the “ideal” frequency responses of the two uni-
form TDL filters. (A similar result was found in [4] for analog
reconstruction filters.) Although the goal is not to directly approx-
imate each of the ideal responses with TDL filters (but rather to di-
rectly designG(f), the single equivalent response), it is expected
that this discontinuity will degrade performance. For comparison,
we consider a similar system withfc = 1:5f0; wherem(f) = 3,
continuous on the interval of interestF = (�2f0;�f0). Choos-
ing � = 1=4fc for both cases, linear programming was used to
design the composite TDL responses as the sum of two offset 14-
tap FIR filters, with the overall response constrained to have linear
phase for simplicity. The peak stopband level was set to�60 dB
and the passband ripple was minimized. The top two plots of Fig. 7
show the resulting responses and passband details. The second fil-
ter, corresponding tofc = 1:5f0 (and a constantm(f)) has less
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Figure 6: Example bandpass signal spectrum and corresponding
functionm(f).
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Figure 7: Frequency responses of the example nonuniformly-
spaced TDL filters.

passband ripple than the top filter.

Even whenm(f) is constant on the interval of interest, the con-
dition number of the matrix� has a strong effect on the perfor-
mance of the nonuniform TDL filter. Consider again a second-
order bandpass sampling system withfc = 1:5f0, but now with
� = 1=4fc and� = 0:3=f0. In the first case, the condition number
is 1, but in the second case it is> 6. The second and third plots
of Fig. 7 show the two responses. Both the passband ripple and
the out-of-band filter response are larger for the high-condition-
number case. This third response is in fact worse than the first case,

wherem(f) was discontinuous, and�(�) =

�
1:2; m = 3
1:3; m = 4

.

4. SUMMARY

The analysis of a certain class of periodically nonuniform sam-
pling/reconstruction systems was presented as a filter design prob-
lem, where a single equivalent TDL filter response controls the
spectral shaping of the sampled function. Second-order sampling
was chosen for its simplicity to illustrate the concepts. It was seen
that even when arbitrary sampling offsets are allowed, the rela-
tionship between the sampling rate and the spectral location of the
bandpass signal can limit system performance.
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