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ABSTRACT

This paper proposes a comprehensive method for overcoming
the inherently serial nature of variable-length near-entropy cod-
ing to obtain unrestrictedly parallel realizations of Huffman com-
pression. Acodestream rearrangementtechnique together with
a symbol-stream order-recoveryprocedure form a concurrent ap-
proach capable ofexceedingall previously attainable coderate fig-
ures. Furthermore, the method is noteworthy for achieving 100%
hardware utilization with no coderate overhead while maintaining
data output in a traditional streamed format. To further this en-
deavor, bit-serial encoder and decoder designs that possess com-
pelling speed and area advantages are developed for service as
parallel processing elements. However, both are suitable in more
general contexts as well. The decoder, in particular, is optimally
fast. The encoder and decoder designs are programmable, thus
suggesting the appropriateness of the composite approach for a
general-purpose ultra-high-speed codec. Benefits for low-power
and variable-rate applications are briefly discussed.

1. INTRODUCTION

In the years since D. A. Huffman’s acclaimed work on compres-
sion, the coding concept bearing his name has garnered increasing
prominence among practitioners of data processing despite sub-
sequent advances in the state of the art. Recent adoption in such
influential standards as CCITT, JPEG and MPEG bode well for the
continuation of this trend. Yet, this universal embrace belies seri-
ous encumbrances. Chief among them, variability in the length
of the encoded outputs has thwarted application of traditional cir-
cuit acceleration techniques. Regular codeword boundaries are the
mainstay of parallelism in particular. Absent this condition, mul-
tiple offset codewords cannot be located without first ascertain-
ing the span of all preceding codewords. Because determination
of codeword lengths is tantamount to decoding, serial codestream
processing is mandated. This processing schedule is so strongly
inherent in the Huffman algorithm that the great bulk of the litera-
ture focuses not on inter-codeword parallelism, but on parallelizing
within the confines of the single-word decoding operation.

A variety of ad hocapproaches have been proposed to over-
come the complications of unevenly-delimited input data streams
at the intra-codeword level. Since maximum codeword lengths
appreciably exceed the number of bits required by straight sym-
bol enumeration, a brute-force solution which stores symbols in-
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dexed by full-length, arbitrarily-padded codewords affronts all de-
sign sensibilities by squandering area resources. Hence, clever
configuration of the LUT dominates published results. In [1], the
LUT is realized efficiently by means of a PLA. However, this style
of architecture does not accommodate codebook programmability,
which is a critical capability for maximizing compression ratios.
A similar caveat applies to the reverse-binary-tree approach of [2],
which requires rather specialized structural elements and intercon-
nections. More conventional constructs are employed by meth-
ods which decompose the LUT into a series of sub-tables. Pro-
vided each sub-table is nearly or entirely homogeneous in code
length, exponential storage redundancy is avoided. By dealing
exclusively with a specialized subset of Huffman codes, viz., the
Huffman-Shannon-Fano code, a numerical sequence property may
be exploited to simplify sub-table addressing. In [3] sub-tables are
formed according to consecutive bit patterns, while in [4] codeword-
length equality is the basis of sub-table formation. Querying all
sub-tables ranges in parallel permits one-cycle decoding.

Inter-codeword parallelism has been explored only in narrow
contexts. In [5] it is shown that for diminutive alphabets a finite-
state-machine specification can be manipulated to achieve concur-
rency in a non-programmable solution. A truly parallel scheme
was suggested in [6]. However, that offering supported only non-
standard parallel random-access output rather than thede factofor-
mat, streamed output.

The limitations of the foregoing methods underscore the logi-
cal inconsistency of parsing a serial data stream for which ana pri-
ori, data-independent demarcation rule has not been established.
A recourse is provided by enforcing boundary regularity through
code transformations. Although a codestream may be constructed
accordingly by detaining data as necessary to achieve alignment
at fixed intervals, as proposed on a block-level basis in [7], such
overhead stands in contradiction to the objective of compression.

In this paper, acodestream rearrangement transformationis
described which facilitates parallel scalability from the intra-word
through inter-word level. Unlike previous methods, the degree
of parallelism that may be attained is independent of algorithmic
considerations. Additionally, architectures are introduced which
enhance the utility of this scheme. For encoding, a tight pro-
grammable storage scheme is proposed with applications to both
codebit-serial and one-cycle encoding. For decoding, a simplified
realization of the tree representation of a codebit-serial decoder ar-
chitecture is developed for high-speed operation. The composite
effect of this approach is an unrestrictedly scalable compression
scheme in which the pace of operation of individual processing el-
ements (PEs) is slow enough that economical memory structures
may be employed. In essence, this technique releases ultra-high-



rate signal processing design from a codec bound, permitting op-
timization effort to be directed toward the more significant aspects
of data presentation. With 100% PE utilization and no coder-
ate overhead, this method may provide the only viable means of
achieving a specific coderate target.

This paper is organized as follows. In section 2, the cho-
sen codestream rearrangement is briefly explained. Section 3 il-
lustrates the concept with an architectural template that includes
the key supporting circuitry structures. Section 4 details a spe-
cific encoder implementation which offers advantages in both bit-
serial and bit-parallel contexts. Section 5 offers an improved varia-
tion on decoder architectures with tree-based codebook representa-
tions. The design features a minimum critical-path delay. Finally,
Section 6 concludes with assessments of the applicability of this
promising scheme in key design contexts.

2. CODESTREAM REARRANGEMENT

The central impediment to inter-codeword parallelism in the Huff-
man compression algorithm is the inherenta posterioridiscovery
of codeword demarcations. To concurrently partition and route
codewords to individual PEs, an unambiguous data-independent
boundary heuristic must be known to both encoder and decoder.
An aptly chosen rearrangement of the codestream can impose suf-
ficient order to accomplish this goal. The specific technique em-
ployed in this work ism-fold interleaving, wherem symbolizes
the desired degree of parallelism. With this approach, re-ordered
codewords are time-division multiplexed (TDM) at the encoder by
allotting an invariant time-slot offset. In bit-serial fashion, each
codeword is completely output via its assigned slot. Immediately
thereafter a new codeword is allocated to the same slot so that
PEs are 100% utilized. Thus, allocation proceeds according to
PE availability, with symbols assigned in the order of arrival on
the input symbol stream. This interleaved rearrangement process
is depicted in Fig. 1. Note that longer codewords will occupy a
slot proportionally longer than shorter codewords. In fact, if the
shortest codeword is assumed to be of length 1, one PE may pro-
cess up tob short codewords while another processes a singleb-bit
codeword. As is the practice, a fixed maximum codeword length,
designated asbmax, will henceforth be assumed.

3. PARALLEL SUPPORT STRUCTURE

From a high-level perspective, the design of an encoder that real-
izes this operation is particularly straightforward. The serial-to-
parallel converter works as follows; using PEs which implement
the bit-serial encoding process described in section 4, a symbol is
drawn from the input symbol stream in FIFO order and delivery
to the encoder PE of current index is attempted. If that processor
is preoccupied, the processor of the succeeding index, modulom,
is queried for availability. This step is repeated until a free PE is
located. The symbol is then deposited and the process repeats.

PEs are clockedm times slower than the serial-to-parallel-
converter circuitry. Thus, one new symbol could potentially be
required by each PE in a PE clock cycle. As is often the case,
associated codeword lengths exceeding unity dictate less frequent
symbol acceptance. By the very nature of variable-length cod-
ing, instantaneous symbol-stream to codestream size ratios fluc-
tuate. Managing symbol-stream flow at both the encoder input
and decoder output is, therefore, an issue common to all Huffman
schemes and will not be addressed herein.
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Figure 1: Stream rearrangement: entire codewords are allocated to
the (prioritized) first-available PE channels. These are scanned in
order bit-by-bit resulting in an output with embedded concurrency.
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Figure 2: Basic support circuitry for the parallel encoder.

Deferring the internal workings of the PE for the present expo-
sition, it suffices to recognize that one codebit per PE clock period
per PE is produced. These are straightaway assembled into a code-
stream in the TDM manner, with the codebit of the PE indexed by
i ∈ (0, m − 1) inserted at time periodmT + i, wheremT is the
period of the PE clock. The described supporting circuitry for the
encoder is diagrammed in Fig. 2.

3.1. Symbol-Stream Order Recovery

In the inverse process, the transmitted codestream is disassembled
at the decoder, with the leading bit of anm-bit input block cor-
related to the PE of lowest index. At this point, each PE, to the
extent possible, decodes the newly assigned bit as the initiation or
continuation of a codeword. If the bit completes a codeword, the
associated symbol is output to a local queue buffer. A prerequisite
for the recovery of the original symbol-stream ordering is the post-
ponement of retrieval of a subsequent symbol before a preceding
symbol is decoded. Hence, the queue buffer is required for this
function. Since, as observed previously, any one PE may process
up to bmax 1-bit codewords before another finishes computation
on a singlebmax-bit codeword, the queue must retainbmax de-
coded symbols of wordlengthlog2 n, wheren is the cardinality of
the symbol alphabet. To avoid the critical-path delay of a counter
addressing structure, two cyclic shift registers of widthbmax, are
employed to circulate tokens corresponding to the current input
and output positions. Access to the registers comprising the queue
is then regulated by entrance and exit transmission features, which
are under the direction of the token registers.

The queue structure must be supplemented with a linear-shift
notification register of widthbmax + 1 in order to reconstruct the
original order. The arrival of the first bit of a new codeword is pos-
itively flagged in this register at the most significant end, whereas
an intermediate bit is negatively flagged. Each cycle results in
translation toward the externally-monitored least significant end.



Note that most-significant-bit (MSB) to least-significant-bit (LSB)
traversal of the register is accomplished in precisely the same time
required to decode the longest codeword. Thus, the symbol corre-
sponding to a codeword flag received at the LSB position is guar-
anteed to have been previously advanced into the queue.

Supervisor logic operating at a clock ratem times faster than
the PE clock rate scans PEs in sequence, examining the LSB posi-
tion of each notification register for confirmation of symbol avail-
ability. If the indicator bit is affirmative, a symbol is dequeued and
transferred to the output stream. As alluded to earlier, symbols are
ejected onto the output stream intermittently in the characteristic
manner of variable-length coding. The essential circuitry frame-
work of the decoder is illustrated in Fig. 3.

It should be emphasized that the preceding circuit overviews
are merely templates that may be tailored with the PE of choice.
The succeeding sections will feature coder designs that are princi-
pally optimized for speed, with only secondary regard for area and
power dissipation. Were either of the latter parameters deemed of
higher precedence, different PE designs might be warranted.

4. ENCODER PROCESSOR DESIGN

Achieving substantial scalability requires that the replicated PEs
possess exceptional efficiency attributes. To this end, a direct en-
coder design is proposed which has a fixed, low memory bound.
Yet, it avoids many of the critical drawbacks of other methods by
providing programmability while emitting the codeword in MSB-
first order without post-encoding reversal. Furthermore, a critical-
path delay of just over one memory-access period is achieved.

Despite its efficiency, the design is surprisingly straightfor-
ward. A random-access memory of sizen and word lengthbmax +
1 is employed. The extra bit of word length permits a punctuation
bit with a value of one to be appended to each codeword. The code-
word so modified is stored MSB-justified, zero-padding as neces-
sary, in the position indexed by the corresponding symbol. En-
coding is accomplished by accessing the codeword using the sym-
bol as an address into the resulting LUT. The retrieved codeword
is immediately transferred into a shift register of the same word
length. The MSB is output in every cycle with the shift register
translating its contents one bit per cycle toward the MSB position.
By injecting zero bits at the LSB position, codeword length may
be ascertained implicitly by testing thebmax − 1 least-significant
positions for nullity. When this condition is detected the process
repeats with a new codeword.

Operating speed is clearly optimized in this design. The critical-
path delay is expressed asτlut + τzero, whereτlut is the delay of
the LUT operation andτzero is the delay of the null-test opera-
tor. Furthermore, memory requirements are modest. In the liter-
ature,bmax is commonly selected as2 log2 n + ε, whereε is 0
or small, e.g., for a 256-symbol alphabet, a maximum codeword
length of between 16 and 20 bits is typical. A memory of size
n× (2 log2 n+ 1 + ε) is thus required. Although, in terms of to-
tal bit expenditure better bounds have been demonstrated, a perfor-
mance penalty always applies. This design is uniquely optimal in
the sense that critical-path delay is reduced to near minimum for a
programmable structure, yet memory sizes do not significantly ex-
ceed those of storage schemes which represent the related tree with
pointers, such as in [8]. Moreover, possessing onlyn locations,
internal address decoding in the memory unit is more economical
with this direct approach than with the tree-based representations.
Fig. 4 delineates the described encoding arrangement.
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Figure 3: Support circuitry for the parallel decoder. Magnified
inset: detail of the queue structure.
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Figure 4: Schematic of encoder PE architecture. A conceptualiza-
tion of the data storage technique is shown in the LUT.

5. DECODER PROCESSOR DESIGN

For bit-serial decoding, pointer-based representations of the Huff-
man tree lead to terse memory requirements. It has been demon-
strated in [8] that it is feasible, through rather circuitous operations
and assumptions, to use a memory with one word per existing tree
node, where each word is just one bit wider than the bit width re-
quired to contain an arbitrary symbol. Since the quantity of nodes
is invariant for a fixed-size alphabet, programmability is assured.
In this section, a streamlined design with precisely the same mem-
ory requirements as the method mentioned above is presented, pre-
supposing no properties of the codetree beyond those intrinsic to
the original Huffman algorithm.

It is easily verified that a binary tree withn leaves is composed
of exactly2n− 1 nodes, regardless of configuration, provided ev-
ery internal node possesses both children. If such a tree, excluding
the root node, is linearized by enumerating nodes in breadth-first,
left-to-right order, all left children will assume an even-numbered
identity. Accordingly, if a memory indexed by these numerical
identities stores a pointer to the left child of every node, the zero-
valued LSB need not be saved. Thus, the width of a pointer is
coincidentally truncated to the same bit width as required to store
a symbol, i.e.,log2 n bits. A single memory unit may contain both
data types if some means of distinction is provided. Appending
one diacritical bit per memory location serves this purpose. In this
arrangement, a symbol value is recorded in each memory location
corresponding to a leaf. To be explicit, a memory of realistic size
2n × (log2 n+ 1) implements the bit-serial LUT. Note that, un-
like other methods which require the numeric-sequence property
of the Huffman-Shannon-Fano code to obtain this level of econ-
omy, this decoder design is burdened by no such restriction. It
should be understood that this specification is not minimum; it can
be shown that the memory span between node and left child is at
mostn − 1 locations; further, this extreme has the potential to
occur only at the penultimate level of the tree. Consequently, if
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Figure 5: Diagram of the decoder PE architecture. Minimal
critical-path delay and overall simplicity of design are evident.

offsets were favored over absolute addressing, an extra bit could
easily be trimmed from the pointer representation. Less direct ad-
dressing schemes have been devised, resulting in ever more petite
memory profiles. Notwithstanding, even the maximum span ob-
servation will be rejected in this solution to avoid the delay of an
offset addition.

The architectural composition of this design assumes an un-
usually trivial form. Given the described order of enumeration,
right-child nodes immediately succeed left-child nodes in mem-
ory. Therefore, the current codebit value fortuitously augments the
left-child pointer in the absent LSB position to form the address of
the next node. Starting with an address of zero, the entire code-
word may be completely decoded without arithmetic operations or
comparisons by recursively retrieving the content indexed by the
address amalgam until the diacritical bit signals a symbol. The de-
coded symbol is dispatched as output to flow-regulation circuitry
– in this case, the local queue structure – and the process repeats
with a new codeword. The structure of the decoder core is visual-
ized in Fig. 5. Clearly, at one LUT access, the critical-path delay
is minimal for a programmable design.

6. CONCLUSIONS

Four facets of ultra-fast Huffman codec design have been explored:
the decoder PE, the encoder PE, the encasing parallel control and
support logic, and the codestream rearrangement scheme. The
latter overcomes the problem of irregularly delimited codeword
boundaries through the mechanism ofm-fold interleaving. The re-
sulting symbol dispersion is reversed with the order-recovery pro-
cess implemented by way of the decoder support circuitry, thus
enabling a traditional streamed output format. The optional en-
coder and decoder designs promote even greater performance yet
boast relatively low area requirements. Because these processors
function in a parallel context, intricate hardware constructs, such
as barrel shifters, are entirely avoided. While tailored specifically
for the parallel approach that is the subject of this paper, both de-
signs are auspicious for stand-alone applications as well.

Given the rate-enhancing capabilities inherent in the codestream-
rearrangement technique itself, the rationale behind the strategy
of targeting the PE clock rate as the primary objective and con-
sumed area as only a secondary objective may not be apparent. In
fact, any LUT storage approach that compacts memory beyond one
location per item must employ some style of arithmetic or other
whole-word operation to decompact. Assuming modern memory
implementations, such operations have the potential to roughly
halve the clock rate. Thus, approximately twice as many PEs
would be required to maintain throughput. Since no approach has
been presented which reduces memory to significantly less than

half of the sizes demonstrated herein, it is apparent even at a su-
perficial level that overall area expenditures will be comparable.
In practice, when the area of additional arithmetic logic and repli-
cated PE support-and-control hardware overhead is accounted for,
a design with a smaller LUT is seen to be more costly. Further-
more, the simplicity of the proposed designs avoids other practical
difficulties, such as irregular layouts and congested wiring. Curb-
ing critical-path delays is advantageous from the converse perspec-
tive as well; inexpensive standard memory/logic structures or less
sophisticated fabrication processes may be exploited for high-rate
applications.

Because the codebook is reprogrammable, the approach ex-
pounded in this paper is suitable for a general purpose codec. Fur-
thermore, static or on-the-fly reconfiguration for various rates is
possible by disabling PEs, i.e., support circuitry could be instructed
to scan abbreviated subsets of PEs and, if desired, idled PEs could
be powered down. Such quality-of-service regulation techniques
have been shown to yield power dissipation benefits in unrelated
applications. However this approach, even without such modifica-
tions, offers innate power dissipation benefits due to its scalability.
A well-known design principle asserts that increasing parallelism
while maintaining a specified throughput rate by adjusting supply
voltage permits considerable power savings to be achieved. This
scheme, being scalable without overhead, is able to extract full
advantage from supply-voltage manipulation.

Though the price of a parallel approach is not insignificant
in terms of consumed area, the role of nearly unlimited concur-
rency in achieving heretofore unapproachable coderates is overrid-
ing. Because the codestream-rearrangement technique is optimal
on so many fronts – in particular, 100% PE utilization, no coder-
ate overhead, linear speedup and a streamed output format – the
technique is applicable in the broadest range of settings.

7. REFERENCES

[1] S. M. Lei and M. T. Sun, “An entropy coding system for digital
HDTV applications,”IEEE Trans. Circuits Systs. Vid. Tech.,
vol. 1, no. 1, pp. 147-55, 1991.

[2] A Mukherjee, N. Ranganathan and M. Bassiouni, “Efficient
VLSI designs for data transformation of tree-based codes,”
IEEE Trans. Circuits Systs., vol. 38, no. 3, pp. 306-14, 1991.

[3] H. Park, J. C. Son and S. R. Cho, “Area efficient fast Huffman
decoder for multimedia applications,” inProc. ICASSP 1995,
vol 5., pp. 3279-81, Detroit, May, 1995.

[4] B. W. Y. Wei and T. H. Meng, “A parallel decoder of pro-
grammable Huffman codes,”IEEE Trans. Circuits Systs. Vid.
Tech., vol. 5, no. 2, pp. 175-8, 1995.

[5] K. K. Parhi, “High-speed VLSI architectures for Huffman and
Viterbi decoders,”IEEE Trans. Circuits Systs. II, vol. 39, no.
6, 1992.

[6] P. G. Howard and J. S. Vitter, “Parallel lossless image com-
pression using Huffman and arithmetic coding,” inProc. Data
Comp. Conf., pp. 299-308, Snowbird, Utah, Mar., 1992.

[7] H. D. Lin and D. G. Messerschmitt, “Designing a high-
throughput VLC decoder part II – parallel decoding methods,”
IEEE Trans. Circuits Systs. Vid. Tech., pp. 197-206, 1992.

[8] H. Park and V. K. Prasanna, “Area efficient VLSI architectures
for Huffman coding,”IEEE Trans. Circuits Systs. II, vol. 40,
no. 9, pp. 568-75, 1993.


