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ABSTRACT

Ephraim and Malah's MMSE-LSA speech enhancement al-
gorithm, while robust and effective, is difficult to tune and
adjust for the tradeoff between noise reduction and distor-
tion. We suggest a means of generalizing this design, which
allows for other estimators besides the MMSE-LSA to be
used within the same supporting framework. When a mod-
ified version of Ephraim and Van Trees's spectral domain
constrained signal subspace estimator is used in this man-
ner, we obtain a system with greater flexibility and similar
performance. We also explore the possibility of using dif-
ferent speech enhancement techniques as pre-processors for
different parameter extraction modules of the IS-641 speech
coder. We show that such a strategy can increase the quality
of the coded speech and lead to a system that is more robust
to differing noise types.

1. INTRODUCTION

It is usually the case that for a given speech enhancement
scheme, a tradeoff must be made between the amount of
noise removed and the distortion introduced as a side ef-
fect. If too much noise is removed, listeners could find the
resulting distortion objectionable and reject the enhanced
waveform in favor of the original noisy speech. The energy
of the noise and distortion are not the only factors involved
in influencing listener preference; tonal distortions become
annoying when just audible, while a certain level of “natu-
ral sounding” background noise is well-tolerated. Residual
background noise also serves to perceptually mask slight
distortions, making its removal even more troublesome.

1.1. The MMSE-LSA Estimator

We say that clean speechx[n] is corrupted by additive noise
d[n] to produce a noisy speech signaly[n]:

y[n] = x[n] + d[n]: (1)

We assume that the speech and noise are independent. Let
Yk, Xk, andDk be thekth DFT coefficients of the noisy

speech, clean speech, and noise respectively, where

Xk = Ake
j�k ; (2)

Yk = Rke
j�k : (3)

We assume that the DFT coefficients of both the speech and
the noise are independent Gaussian random variables.

Ephraim and Malah's minimum mean-square error log-
spectral amplitude (MMSE-LSA) estimator [4] is a member
of the class of short time spectral amplitude (STSA) estima-
tors that modify the spectral amplitude of the noisy speech
and leave the phase untouched. The enhancement is realized
as a gain:

Âk = G(�k; 
k)Rk (4)

where�k and 
k are called thea priori and a posteriori
SNR's respectively:

�k =
E[A2k]

E[jDkj2] ; (5)


k =
R2k

E[jDkj2] : (6)

Ephraim and Malah's system contains a number of novel
features, such as a decision-directed approach to estimating
�k that reduces musical noise [3] [2], and the addition of a
gain modification factor,Mk, that implements a soft deci-
sion [8] [3]. A modified version of the MMSE-LSA algo-
rithm builds upon this structure [7]. With soft decision in
this altered scheme, (4) becomes

Âk = Mk � G(�k; 
k)j�k= �k
1�qk

Rk (7)

whereqk is thea priori probability of speech absence in
the kth frequency bin. This scheme also includes a noise
adaptation module that identifies noise-only frames and is
capable of tracking non-stationary noise, even when speech
is present.

The modified MMSE-LSA exhibits good noise distor-
tion properties, as the residual noise in the enhanced speech
usually sounds similar in character tod[n], and is therefore
perceived as “natural”. However, it is awkward to adjust the
tradeoff between the residual noise level and the speech dis-
tortion. The most effective way to do this is through the for-
getting factor in the decision-directed estimate of�k, which
does not offer enough flexibility [2].



1.2. A Signal Subspace Approach

Ephraim and Van Trees developed a speech enhancement
approach based on signal subspace decomposition [5]. In
this work it is noted that the vector space containing the
noisy speech can be decomposed into a signal-plus-noise
subspace and a noise-only subspace. Once identified, the
noise-only subspace can be eliminated and the speech can
be subsequently estimated from the remaining signal-plus-
noise subspace.

In vector notation, we have

y = x + d (8)

whered is assumed to be white noise. We consider applying
a linear filterH to the noisy speech to obtain the enhanced
speech

x̂ = Hy: (9)

We can decompose the residual error into a term solely de-
pendent on the clean speech, called the signal distortion
rx = (H � I)x, and a term solely dependent on the noise,
called the residual noiserd =Hd:

r = x̂ � x
= (H � I)x+Hd

= rx + rd: (10)

We consider Ephraim and Van Trees's spectral domain
constrained estimator, where the energy of the signal distor-
tion �"2

x
is minimized while each of the eigenvalues of the

residual noise is constrained below a constant proportion of
the noise variance�2

d
:

min
H

�"2x subject to E[ju#k rdj2] � �k�
2
d: (11)

Hereuk is thekth eigenvector of the noisy speech,(�)# de-
notes vector conjugate transpose,0 � �k � 1, and the con-
straint is applied to eachk in the signal-plus-noisesubspace.
The solution forH takes on a particularly simple form —
a Karhunen-Loeve Transform is applied to the noisy speech
signal, the resulting eigenvalues are multiplied by a set of
gains, and these products undergo an inverse KLT to yield
the enhanced speech. The gains are given by

Gk =
p
�k: (12)

The constraints, the�k' s, still need to be specified. Ide-
ally they would be based on a perceptual hearing model, but
Ephraim and Van Trees found that

�k = exp

�
�� �2

d

�x[k]

�
(13)

yields good results, where�x[k] is thekth eigenvalue of the
clean speechx and� is a constant that determines the level
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Figure 1: The general structure of the modified MMSE-
LSA algorithm.

of aggression of the enhancement. Both�2
d

and�x[k] need
to be estimated in order to implement the algorithm.

Although this signal subspace framework provides for
an explicit tradeoff between speech distortion and residual
noise reduction through the�k' s, there is no accounting for
noise distortion, which can have damaging effects on the
quality of the enhanced speech.

2. SIGNAL SUBSPACE AS A CORE ESTIMATOR

The general structure of the modified MMSE-LSA algo-
rithm is shown in Figure 1. It consists of a core estima-
tor (the MMSE-LSA) embedded in a supporting framework.
We wish to substitute the spectral domain constrained signal
subspace estimator for the MMSE-LSA as the core estima-
tor, while making use of the remaining modules. Our goal
is to obtain the flexibility and tradeoff control of the signal
subspace approach along with the good distortion reduction
properties provided by the remainder of the MMSE-LSA
framework.

The first difficulty encountered when incorporating sig-
nal subspace in the MMSE-LSA framework is that these
components operate in different domains — signal subspace
computes the KLT while the MMSE-LSA modules calcu-
late the DFT of the noisy speech. We therefore make the sta-
tionary process long observation time (SPLOT) assumption,
where we approximate the KLT with the DFT and work ex-
clusively in the frequency domain. With this simplification,
the eigenvalues become the spectral coefficients of the noisy
speech. Now the signal subspace gainsGk are applied to the
noisy speech DFT coefficientsYk.

The removal of the noise-only subspace contributes to
unnatural sounding noise structuring. In fact, with the DFT
approximation to the KLT, the removal of the noise-only
subspace corresponds to a hard decision. We will therefore
omit the explicit removal of the noise-only subspace done
in [5] and instead rely on the soft decision and noise adapta-
tion modules to take advantage of the uncertainty of speech
presence, as these techniques are known to usually lead to



more natural sounding noise [3] [7].
The spectral domain constrained estimator assumes that

the noise is white. Therefore, we will first whiten the noise
with a whitening filterW, then apply the estimator, and
finally invert the whitening operation. Because we are ap-
proximating the KLT with the DFT, the changes introduced
are subtle. It is straightforward to verify that the form of
the estimator does not change. However, the constraint is
modified. We now have

E[ju#k ~rdj2] � �k~�
2
d (14)

where
~rd =HWd (15)

is the residual whitened noise, and

~�2
d
= E[ju#kWdj2] (16)

is the variance of the whitened noise. The expectations in
(14) and (16) are energy spectral coefficients of the residual
whitened noise and the whitened noise respectively. Now,
dividing thekth constraint in (14) by the magnitude squared
of thekth component of the whitening filter in the frequency
domain, we obtain our new constraint:

Srdrd [k] � �kSdd[k]: (17)

HereSrdrd [k] andSdd[k] are thekth spectral coefficients of
the residual noise and original noise, respectively. The final
step is to choose the constraints�k. Following Ephraim and
Van Trees, we suggest a form similar to (13):

�k = exp

�
�� Sdd[k]

Sxx[k]

�
= exp

�
� �

�k

�
: (18)

In this manner, we heavily base our core estimator on the
decision-directed estimate of�k given by the MMSE-LSA
framework, and benefit from the resulting reduction in mu-
sical noise. With soft decision, the magnitudes of the DFT
coefficients of the enhanced speech for thishybrid algo-
rithm become

Âk = Mk � exp
�
� �

�k

�����
�k=

�k
1�qk

Rk: (19)

3. CORE ESTIMATORS FOR THE IS-641

When designing a speech enhancement pre-processor for
the IS-641 speech coder (a 7.4 kb/s ACELP codec) [6], it
seems natural to use different speech enhancement tech-
niques as pre-processors for different parameter extraction
modules of the coder, since different modules make use of
different aspects of the input speech in order to code it. By
using the MMSE-LSA framework with different core esti-
mators for the different enhancement types, a variety of pre-
processors can be implemented with some savings in overall
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Figure 2: Using two different types of speech enhancement
as a pre-processor for the IS-641.

complexity. Here we propose to use different core estima-
tors for the LPC analysis and the residual processing of the
IS-641, as shown in Figure 2.

For the “type 1” enhancement for the LPC analysis we
will use a magnitude-squared core estimator:E[jXkj2jYk].
Assuming the DFT coefficients of both the noise and clean
speech are independent Gaussian random variables, we can
easily compute

E[jXkj2 j Yk] =

�
Sxx[k]

Sxx[k] + Sdd[k]

�2
jYkj2

+
Sdd[k]Sxx[k]

Sxx[k] + Sdd[k]
: (20)

We can express this in terms of parameters in the MMSE-
LSA framework as

E[jXkj2 j Yk] =
�

�k

1 + �k

�2
jYkj2 + �k

1 + �k
Sdd[k]: (21)

Note that the noise adaptation module provides an estimate
of the spectral coefficients of the noiseSdd[k].

We will use the hybrid algorithm (with the spectral do-
main constrained estimator as a core estimator) from Sec-
tion 2 for the “type 2” enhancement for the residual calcu-
lations. We will refer to this pre-processor system as “com-
bination enhancement”.

4. SUBJECTIVE TEST RESULTS

MOS tests were conducted on a number of enhanced noisy
speech samples. Three male and three female speakers each
provided a sentence pair sampled at 8 kHz. Both car noise
(with SNR's of 10, 15, and 20 dB) and babble (with SNR's
of 10 and 20 dB) were then added to this clean speech.
A number of enhancement techniques were applied: the
hybrid algorithm described in Section 2 (Hyb), the modi-
fied MMSE-LSA (LSA) [7], the magnitude-squared estima-
tor from Section 3 (Mag2), the combination enhancement



Babble Car NoiseEnh. Clean
10 dB 20 dB 10 dB 15 dB 20 dB

None 4.09 3.08 3.74 2.72 3.17 3.48
Hyb 4.12 2.88 3.72 3.25 3.67 3.88
LSA 4.12 3.21 3.79 3.19 3.58 3.79
Mag2 4.13 3.20 3.85 3.15 3.53 3.75
Comb 4.10 2.93 3.84 3.22 3.66 3.93
127 4.11 2.93 3.75 2.93 3.45 3.80

Table 1: MOS scores for different enhancement types (by
row) and different noise types and intensities (by column).
All samples have been coded with the IS-641.

technique also described in Section 3 (Comb), and the IS-
127 noise suppression pre-processor (127) [9]. As a final
step, all speech samples were coded with the IS-641 speech
coder. The MOS results are shown in Table 1.

All of these enhancement techniques substantially im-
proved the quality of speech contaminated by car noise.
The hybrid algorithm generally performed the best, with
the combination enhancement at a close second. The modi-
fied MMSE-LSA and magnitude-squared algorithms trailed
behind slightly. This disparity is primarily due to differ-
ences in the residual noise energy — the hybrid and com-
bination enhancement remove more of the car noise than
both the MMSE-LSA and magnitude-squared algorithms,
without introducing very much additional distortion. All
four of these techniques proved superior to the IS-127 pre-
processor, indicating the strength of the framework in [7].

The results for babble were more disappointing. En-
hancement usually helped in the 20 dB case, with the mag-
nitude-squared and combination enhancement techniques
performing the best. For the 10 dB case, however, only the
MMSE-LSA and magnitude-squared algorithms were able
to increase the quality of the noisy speech. Thehybrid algo-
rithm performed the worst in this case. The reason for this
performance is that the noise adaptation module had a good
deal of trouble properly tracking the highly non-stationary
babble. The hybrid algorithm makes a much more aggres-
sive enhancement decision given this noise estimate than
the MMSE-LSA or magnitude-squared estimators. When
the noise tracking is very accurate, this leads to less resid-
ual noise without many distortions, as with car noise. But
when the noise tracking is more error-prone, as with babble,
the hybrid algorithm causes extra unwanted distortions.

It is interesting to note how the combination enhance-
ment exhibits the strengths of both of its constituent en-
hancement routines, the hybrid and magnitude-squared al-
gorithms, to become more robust to differing noise types.
Better quality is obtained with combination enhancement
than with the hybrid algorithm in babble and with the mag-
nitude-squared algorithm in car noise. In fact, with the ex-
ception of 10 dB babble, the MOS scores for the speech
samples processed with the combination enhancement are

within 0.03 of those for the best enhancement algorithm
tested for each noise type.

5. CONCLUSIONS

We have described a means of replacing the MMSE-LSA
estimator with a more flexible signal subspace based estima-
tor, while retaining the supporting modules and their bene-
ficial contributions to restricting distortion. We have also
suggested how multiple core estimators can make use of
this same framework as a single pre-processor for a speech
coder. Such an approach appears to be robust to differing
noise types. A more detailed treatment can be found in [1].
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