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ABSTRACT

We describe recent extensions and improvements to IBM's
system for automatic transcription of broadcast news. The
speech recognizer uses a total of 160 hours of acoustic train-
inng data, 80 hours more than for the system described
in [6]. In addition to improvements obtained in 1997 we
made a number of changes and algorithmic enhancements.
Among these were changing the acoustic vocabulary, reduc-
ing the number of phonemes, insertion of short pauses, mix-
ture models consisting of non-Gaussian components, pro-
nunciation networks, factor analysis (FACILT) and Bayesian
Information Criteria (BIC) applied to choosing the number
of components in a Gaussian mixture model. The models
were combined in a single system using NIST's script voting
machine known as rover [8].

1. INTRODUCTION

Recently interest in large vocabulary continuous speech recog-
nition recognition (LVCSR) research has shifted from read
speech data to speech data found in the real world - like
broadcast news (BN) over radio and TV and conversa-
tional speech over the telephone. A considerable amount
of both acoustic (approximately 200 hours of which about
80% is usable) and linguistic (approximately 400 million
words) training data for BN has been made by the Lin-
guistic Data Consortium (LDC) in the context of DARPA
sponsored Hub4 evaluations of large vocabulary continuous
speech recognition (LVCSR ) systems on BN [11]. BN tran-
scription poses several challenges to LVCSR systems. The
speech data exhibits a wide variety of speaking styles, en-
vironmental and background noise conditions and channel
conditions. The general approach has been to classify the
BN data into a set of homogeneous conditions and to build
acoustic models for each condition. Test data is then seg-
mented and classi�ed along conditions and an appropriate
acoustic model used for each condition. One particular clas-
si�cation scheme for BN news data that has been used in
the DARPA sponsored Hub4 BN evaluation in 1996 splits
the speech data along the so-called F-conditions [11]: pre-
pared speech (F0), spontaneous speech (F1), low �delity
speech, including telephone channel speech (F2), speech
in the presence of background music (F3), speech in the
presence of background noise (F4), speech from non-native
speakers (F5) and FX - all other speech. For rapid devel-
opment we chose to extricate a subset of the testset of [6].
The amount of data from each of the F0{FX conditions was
made equal in our test set.

In this paper we present algorithmic improvements to
the baseline model used in the Hub4 evaluation in 1997, cf.
[6]. Some of the improvements are: mixture models consist-
ing of non-gaussian components, pronunciation networks,
factor analysis (FACILT) and Bayesian Information Crite-
ria (BIC) applied to choosing the number of components
in a Gaussian mixture model. The focus of the research
e�ort has been to improve all conditions (F0{FX) by im-
proving the algorithmic foundation of last years recognizer.
All the above mentioned methods were of this nature. To
gain something from all of these methods we used NIST's
script voting program, rover, that produces a single output
from a number of scripts by voting. The roverized output
is a considerable improvement over the individual systems.

2. OVERVIEW OF THE LVCSR SYSTEM

The IBM LVCSR system uses acoustic models for sub-phonetic
units with context-dependent tying (see [2, 3] for details).
The instances of context dependent sub-phone classes are
identi�ed by growing a decision tree from the available train-
ing data [2] and specifying the terminal nodes of the tree
as the relevant instances of these classes. The acoustic
feature vectors that characterize the training data at the
leaves are modeled by a mixture of Gaussian or Gaussian{
like pdf's, with diagonal covariance matrices. The HMM
used to model each leaf is a simple 1-state model, with a
self-loop and a forward transition.

The recognizer used in the 1997 evaluation had 3.5K
HMM states (or leaves) and 170K Gaussians. The deci-
sion trees for the HMM states were built using the rela-
tively clean data from the F0 and F1 conditions, whereas
the Gaussian mixtures were trained on the complete set of
training data. As the data received from the additional
training data was not segmented along conditions we de-
cided to use the full set of data to build decision trees con-
taining a total of 3.5K HMM states. The Gaussian mixtures
were built from the full training data and the best single
system we arrived at contained 289K Gaussian. The tech-
nique for �nding optimal feature spaces developed last year
was used in all models used in our current system [6]. For
reasons pertaining to computational cost we used a lan-
guage model without 4{grams for development as well as
smaller Gaussian mixture models.



3. ACOUSTIC MODELING

3.1. Pronunciation Dictionary

As our phonetic spellings, also known as baseforms have
been added to and composed in many di�erent ways, the
current list of baseforms comes from a variety of sources
and contains many inconsistencies. To remove these in-
consistencies we inspected spellings of words with common
pre�xes and su�xes. In addition we allowed words like
\Human" with baseform HH Y UW M AX N to delete the
HH as is done in some dialects of American{English. In
baseforms where Y UW was preceded by a dental (T, D,
TH or D) (e.g. as in duty D Y UW T IY or D UW T IY)
we allowed the Y to be deleted for a similar reason. Lastly
we went through words ending in \ING" and compared the
baseforms to the baseform of it's root. The list of baseforms
produced in this fashion was dubbed \clean". The resulting
vocabulary gave little improvements, but made new types
of errors as seen in section 6. A comparison is shown in
table 1.

All F0 F1 F2 F3 F4 F5 FX
II 25.2 11.4 22.5 30.8 27.6 28.2 21.0 40.6
I 25.1 11.2 23.2 30.6 27.7 26.5 21.4 40.8

Table 1: Comparison of clean acoustic vocabulary (I) with
old acoustic vocabulary (II). All numbers are percentages
representing the word error rate.

3.2. Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is a well known
model selection criterion from the statistics literature. BIC
was successfully used for segmentation and clustering for
unsupervised adaptation in the 1997 evaluation, cf. [7].

A di�cult problem one encounters when making a Gauss-
ian mixture model is how to choose the number of Gaussians
in the model. Too few Gaussians does not give su�cient
model complexity and too many leads to overtraining. Us-
ing the BIC selection criteria we can automatically choose
the number of mixture components in a data driven fashion.
The higher the complexity of the data, the more clusters
will be needed. Let n be the number of mixture compo-
nents, Cn the clustering corresponding to n mixtures, NCn

the number of parameters used in the mixture and N the
number of data points. We de�ne the BIC function BIC(n)
as follows

BIC(n) = log(Likelihood(Cn))�
�

2
�NCn � log(N) : (1)

For an individual leaf we choose n to be such that it maxi-
mizes BIC(n) for a previously chosen value of �.

The parameter � in equation (1) allows us to choose
the overall number of Gaussians in our system whereas the
cardinality of Gaussians within individual leaves is left to
be decided by the BIC function.

Experiments involving BIC consistently shows improved
recognition for equally large Gaussian mixture models. This
can be seen in Table 2. Systems of varying sizes was built

All F0 F1 F2 F3 F4 F5 FX
II 26.0 11.9 23.5 31.7 28.4 28.5 22.3 42.3
I 25.2 11.6 23.1 30.5 27.7 26.2 20.5 41.8

Table 2: Comparison of two systems: (I) Gaussian mixture
models with 90K Gaussians for with and (II) without the
BIC selection criterion.

by varying the value of �. The accuracy was shown to
consistently improve as the number of Gaussians increased
to 289K, cf Table 3.

All F0 F1 F2 F3 F4 F5 FX
135 24.7 11.2 21.2 29.5 29.0 26.8 21.6 41.2
178 24.2 10.7 21.5 29.3 26.5 25.9 21.4 40.3
237 23.8 10.7 21.6 29.3 26.5 24.2 19.7 39.6
289 23.5 10.5 21.5 28.9 24.4 24.6 20.7 39.0

Table 3: Gaussian mixture models built using the BIC se-
lection criteria for di�erent values of �. The numbers of
Gaussians are shown in terms of thousands in the leftmost
column.

3.3. Short Pause

Previously our silence phone consisted of a 3-state Hidden
Markov Model. This we felt was insu�cient for modeling
short pauses. To address this problem a new deleteable
short pause phone SX was introduced at the end of each
word. SX is modelled by a single deletable one-state Hidden
Markov Model. This phone was introduced into our system
and models retrained with the new phone. The idea being
that short silences would not be \eaten up" by other phones
at the endings and beginnings of words. The short pause
appears to improve the conditions F0, F1 and FX as can
be seen in Table 4

All F0 F1 F2 F3 F4 F5 FX
II 26.0 12.8 23.5 31.2 28.4 26.5 22.7 43.0
I 26.0 12.3 23.2 33.1 28.3 27.2 21.6 41.1

Table 4: Comparison of two systems: (I) with and (II)
without the short pause phone SX.

3.4. Homogeneous Alpha Mixtures

To model data at the leaf level traditionally one assumes
the distribution to be of the form

f(x) =

nX
i=1

!
i exp

(
�

 
dX
j=1

(xj � �ij)
2

2(�ji )
2

!)
; (2)

where d is the dimension of the vector x = (x1; : : : ; xd) and
the parameters to be decided are the number of mixture



All F0 F1 F2 F3 F4 F5 FX
II 24.6 11.1 21.1 29.1 29.1 26.8 21.3 41.1
I 24.1 10.6 21.3 29.8 25.9 26.6 21.8 39.9

Table 5: Comparison of two systems: (II) Gaussian mixture
models and (II) homogeneous alpha mixture models.

components, m, the means f�igmi=1 = f(�i1; : : : ; �
i
d)g
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standard deviations f�igmi=1 = f(�i1; : : : ; �
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m
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mixture weights f!igmi=1. Many of this years improvements
deals with changes in this model. BIC is used to decide the
value of m, FACILT is used to capture covariance struc-
tures and Homogeneous Alpha Mixtures (HAM) to capture
the peakiness or impulsiveness of the data. When view-
ing graphical representation of densities of 1{dimensional
projections of the data one is struck by the sharpness and
asymmetries of the peaks of the pdf's. These are features
that are di�cult to capture using Gaussian mixtures. We
decided to model the peakiness or impulsiveness using mul-
tidimensional generalizations of the power exponential dis-
tribution (also known as the alpha stable distribution)
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We refer to the case above where all the components have
the same value of � as HAM (homogeneous alpha mixtures).
The case of variable �{values is expounded in [5]. The re{
estimation formulas for an EM-type re-estimation that we
chose to use were previously published in [4]. They are as
follows
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for ` = 1; : : : ;m, k = 1; : : : ;N (fxkgNk=1 is the training
data) and j = 1; : : : ; d. Hatted quantities represent the
previous values of the means, standard deviations and pri-
ors. Means, standard deviations and priors with no hats
represent the new values. The value � = 1 correspond-
ing to Laplacian densities used by Phillips [10] was found
to work best and yielded improvements over the standard
systems as is seen in Table 5.

3.5. Factor Analyzed Covariances

Let j be an index referring to a speci�c mixture compo-
nent. To better model covariances without modeling the
full covariance matrices �j whose dimensions are 60�60 we
constrain the covariances to be of the form �j = A(�j�

T
j +

	j)A
T where A is a shared matrix capturing an optimal fea-

ture space, �j is a \factor loading matrix" whose columns
are less abundant than those of �j, typically numbering 2
or 3 columns, and 	j is a diagonal speci�c matrix. Methods
for parameter estimation of Gaussian mixtures with covari-
ances of this form are described in [9] and the method is
named factor analyzed covariances invariant to linear trans-
formations or FACILT for short. Some initial experiments
with 2 column factor loading matrices are shown in Ta-
ble 6. The only condition that improved signi�cantly was
FX. Experiments with di�erent number of factors and tying
structures of the covariances are still ongoing.

All F0 F1 F2 F3 F4 F5 FX
II 22.6 9.6 20.3 27.2 25.9 23.9 19.7 38.0
I 22.7 9.9 20.3 27.3 26.1 24.8 19.8 37.1

Table 6: Comparison of two systems: (I) FACILT (II) a
comparable diagonal Gaussian model with an equivalent
number of prototypes.

4. THE PHONE SET

We deleted 10 phones that we felt were treated erroneously
and/or inconsistently in our set of baseform. These phones
were AXR, AH, BD, DD, GD, IH, KD, PD, TD and TS. BD,
DD, GD, KD, PD and TD are phones that were intended
to model \double stops", i.e. stops that were followed by
new stops and TS and AXR to model \T S" and \AX R"
that was felt were such short sounds that individual phones
had to be introduced. AH and IH are sounds that are very
close to already existing sounds that are not distinguished
well in our baseform set. After replacing all these phones
in the acoustic dictionary we trained new Gaussian models
and compared with the existing phone set. The results were
signi�cantly worse, cf. Table 7, but as seen in section 6 it
helped yield an improved system when mixed with other
pre-existing systems using rover.

5. PRONUNCIATION NETWORKS

Words in our speech recognizer are mapped to strings of
phones, which are converted into subphonetic units corre-
sponding to HMM states, and further converted into con-
text dependent HMM states known as leaves. A mapping



All F0 F1 F2 F3 F4 F5 FX
II 25.2 11.4 22.5 30.8 27.6 28.2 21.0 40.6
I 27.8 13.9 25.0 33.1 31.3 30.2 26.0 43.1

Table 7: Comparison of two systems: (I) New phone set,
90K Gaussians (II) 130K Gaussians, old phoneset.

of the word \CAR" may look like \K AA R" in terms of
phones, \K1 K2 K3 AA1 AA2 AA3 R1 R2 R3" in the feneme space
and as leaves like: (l1970, l1983 , l1998, l75, l83, l92, l3021 , l3103 ,
l3151). Real speech is not as clean as these ideal labels.
It would be desirable to �nd situations where individual
sounds are closely related and allow these to be confused
with each other. The intention of pronunciation networks
is to remediate the phone confusion problem. Each phone
is replaced by a small network of 3{14 HMM states cor-
responding to individual leaves chosen among the collec-
tion of all leaves from all phones. To build the networks
a \ballistic" decoding that decodes as if the leaves were
words, is performed on the training data. The string of
decoded leaves are then aligned to the \correct" labels pre-
scribed by a training transcription so that each \correc-
t" leaf is assigned a string of ballistic leaf labels. Pairs
of leafs and ballistic leaf strings with high co{occurrence
counts are selected to build a network. This technique is an
extension of work done on Fenonic modeling at IBM during
the late eighties and early nineties. The pronunciation net-
work models appear to improve F1 (spontaneous speech) as
would be expected, cf. Table 8.

All F0 F1 F2 F3 F4 F5 FX
II 22.6 9.1 20.8 28.0 25.1 24.4 19.6 37.1
I 22.4 8.9 20.1 27.8 25.0 24.4 19.5 37.4

Table 8: Comparison of two systems: (I) Pronunciation
networks and (II) traditional tristate HMM models.

6. ROVER

J. Fiscus introduced a voting scheme for combining word
scripts produced by di�erent speech recognizers, [8]. This
program was named rover. We gleefully applied this pro-
gram too many variations of our systems, arriving at an im-
proved system. The philosophical technique was to locate
systems that di�ered in as many ways as possible while still
performing reasonable recognition. The best performing
mixture of speech recognizers consisted of 4 systems with
error rates shown in Table 9. The systems were: (I) a 289K
Gaussian system built using BIC and retrained with the EM
algorithm. This system uses the short pause phone. (II) A
135K homogeneous alpha mixture system with short stop
phone and pronunciation networks. (III) a 120K Gaussian
system built o� of \clean" baseforms. (IV) An 80K Gauss-
ian mixture built from our reduced set of phones.

All F0 F1 F2 F3 F4 F5 FX
I 21.5 8.9 19.7 26.7 23.0 23.0 16.9 36.1
II 22.4 8.9 20.1 27.8 25.0 24.4 19.5 37.4
III 23.1 10.3 21.5 27.8 25.7 24.5 18.2 37.8
IV 27.8 13.9 25.0 33.1 31.3 30.2 26.0 43.1
all 20.2 8.4 18.8 25.9 22.7 22.9 16.2 30.5

Table 9: Fully roverized system showing the 4 individual
systems.
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