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ABSTRACT

In recent work, a class of transforms were proposed which
achieve a remapping of the frequency axis much like conventional
vocal tract length normalization. These mappings, known col-
lectively asall-pass transforms(APT), were shown to produce
substantial improvements in the performance of a large vocabu-
lary speech recognition system when used to normalize incoming
speech prior to recognition. In this application, the most advanta-
geous characteristic of the APT was its cepstral-domain linearity;
this linearity makes speaker normalization simple to implement,
and provides for the robust estimation of the parameters charac-
terizing individual speakers. In the current work, we exploit the
APT to develop aspeaker adaptationscheme in which the cep-
stral means of a speech recognition model are transformed to better
match the speech of a given speaker. In a set of speech recogni-
tion experiments conducted on the Switchboard Corpus, we report
reductions in word error rate of 3.7% absolute.

1. INTRODUCTION

In speaker adaptation, we attempt to transform the cepstral means
of a hidden Markov model (HMM) so as to better match the char-
acteristics of some speech from a particular speaker. Speaker adap-
tation is typically undertaken to reduce the error rate of a large
vocabulary conversational speech recognition (LVCSR) system.
Certainly one of the most effective speaker adaptation methods is
maximum likelihood linear regression (MLLR), wherein a trans-
formation matrix is estimated using some speaker-dependent en-
rollment data, and then used to transform the cepstral means of
a speaker-independent HMM via a straightforward matrix-vector
multiply [6].

Speaker normalizationis closely related to speaker adaptation,
inasmuch as it attempts to transform the short-timefeaturesof a
given speaker’s speech so as to better match a speaker indepen-
dent (SI) model. In prior work, we explored the use of the bilinear
transform (BLT), and a generalization thereof dubbed the all-pass
transform (APT), as a means of formulating practical speaker nor-
malization schemes. Two factors were critical in motivating these
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earlier investigations: Firstly, the BLT approximates to a reason-
able degree the frequency domain transformations most often used
in vocal tract length normalization (VTLN), which is arguably the
most popular and effective speaker normalization technique in use
today [11]. Secondly, both the BLT and APT can be represented
as linear transformations in the cepstral domain [1, 7]. This lat-
ter property provides for a straightforward speaker normalization
scheme—it is in fact possible to apply speaker normalizationon-
the-flyduring training or recognition starting from un-normalized
cepstra . In addition, the linearity of the transformation lends itself
to robust estimation of the requisite speaker dependent transforma-
tion parameters, a property not shared by any other current VTLN
implemention [8].

In the present work, we attempt to apply the BLT and APT,
which have previously proven so useful for speaker normalization,
to the task of speaker adaptation. In doing so we shall again exploit
the cepstral-domain linearity of these transforms, along with their
extremely parsimonious parameterization.

2. THEORETICAL DEVELOPMENT

Consider a real, even cepstral sequencec[n] and its associatedz-
transformC(z), here expressed as

C(z) =
1X

n=�1

c[n] zn (1)

With this definitionc[n] can be recovered fromC(z) through the
contour integral

c[n] =
1

2�j

I
C(z) z�(n+1)dz; (2)

for all n = 0;�1;�2; : : : . In what follows, we shall consider
Equations (1–2) as comprising thetransform pairc[n]$C(z).

Consider now a conformal mapQ(z), which we hope to use as
a mechanism for calculating a normalized cepstral sequenceĉ[n]
from the initial sequencec[n]. The bilinear transform (BLT) is a
conformal map well-suited to this application; it can be expressed
as

Q(z) =
z � �

1� �z
(3)

where� is real andj�j < 1. It is also possible to formulate more
general conformal maps which subsume the bilinear transform, as
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(4)

where� and
 are complex quantities, such thatj�j; j
j < 1. The
most salient characteristics of either map are that:

1. The unit circle is mapped back to the unit circle, since

jQ(ej!)j = 1 (5)

2. The inverse ofQ(z) is easily calculated according to

Q�1(z) = Q(z�1) (6)

Equality (5) is indeed the reason that conformal maps such as (3–
4) are generally referred to as all-pass systems in the digital signal
processing literature [9, Section 5.5]; such systems have uniform
frequency response and thus “pass” signals of all frequencies with
neither attenuation nor amplification. Although they are not dis-
cussed here, it is possible to devise even more general conformal
maps than (4) which still retain these properties [7].

Using an all-pass transform (APT), we should like to trans-
form a cepstral sequencec[n] in some desireable manner. Hence,
let us define thez-transformĈ(z) as the composition ofQ(z) and
C(z), such thatĈ(z) = C(Q(z)). Furthermore, we should like to
associate witĥC(z) a transformed cepstral sequenceĉ[n], where
ĉ[n]$Ĉ(z). More formally,

ĉ[n] =
1

2�j

I
Ĉ(z) z�(n+1) dz (7)

=
1X

m=�1

c[m]
1

2�j

I
Qm(z) z�(n+1) dz (8)

where (7) follows from (8) through use of the series representa-
tion (1) forC(z) and subsequent manipulation of the resulting ex-
pression. The linearity of the cepstral transformation effected by
a conformal map is apparent from (8); this linearity is a direct re-
sult of the analyticity ofQ(z) on the contour of integration, in this
case, the unit circle.

We can exploit the aforementioned analyticity further by form-
ing the transform pairq[n]$Q(z). For example, it is straightfor-
ward to show thatQ(z) as given in (3) admits the series represen-
tation

Q(z) = (z � �)
1X
n=0

�nzn

= ��+ (1� �2)z + �(1� �2)z2 + � � �

From the final equality, the coefficientsq[n] of the series expan-
sion are available by inspection. It is also possible to obtain series
expansions forB(z) andG(z) appearing in (4); see [7] for details.
Thus, upon defining the transform pairsa[n]$A(z), b[n]$B(z),
andg[n]$G(z), the final sequenceq[n] will be given by

q[n] = a[n] � b[n] � g[n] (9)

where� is the convolution operator orCauchy product[3, Section
52]. Furthermore, the analyticity ofQm(z) can be exploited to

form a transform pairq(m)[n]$Qm(z) for everym � 0, such
that

q(m)[n] =
1

2�j

I
Qm(z) z�(n+1) dz (10)

In general, the sequencesq(m)[n] will have infinite extent for both
positive and negative values ofn.

From (10) we deduce two things: Firstly, a simple application
of theCauchy integral formula[3, Section 39] reveals thatq(0)[n]
is the unit sample sequence, such that

q(0)[n] =

(
1; for n = 0

0; otherwise
(11)

Secondly, asQm(z) = Q(z) � Qm�1(z), the several sequences
q(m)[n] for allm > 1 can be calculated based solely on knowledge
of q(1)[n] via the recursion

q(m)[n] = q(m�1)[n] � q(1)[n] (12)

Hence, comparing (10) with the integral in (8), we discover the
desired cepstra are available from

ĉ[n] =
1X

m=�1

c[m]q(m)[n] (13)

As c[m] is even, it is uniquely specified by its causal portion.
Following the example set by others [9, Chapter 12], let us make
use of this fact to define the sequencex[n] as

x[n] =

8><
>:
0; n < 0

c[0]; n = 0

2c[n]; n > 0

(14)

This latter sequence is the one most often associated with the term
cepstrum. In this case,c[n] can be recovered fromx[n] through
the relation

c[n] = 1
2
(x[n] + x[�n]) (15)

In addition, further consideration of Eqn. (6) reveals that

q(�m)[n] = q(m)[�n] (16)

If we also define a sequencêx[n] as the causal portion of̂c[n], and
substitute (14–16) into (13), we deduce that it is possible to obtain
x̂[n] from

x̂[n] =

1X
m=0

anm x[m] (17)

where

anm =

8><
>:
q(m)[0]; for n = 0;m � 0

0; for n > 0;m = 0�
q(m)[n] + q(m)[�n]

�
; for n;m > 0

(18)

are the components of thetransformation matrixA = fanmg.
Figure 1 shows the original and transformed spectra for a win-

dowed segment of male speech sampled at 8 kHz; both spectra
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Figure 1: Original (thin line) and transformed (thick line) short-
term spectra for a male test speaker regenerated from cepstral co-
efficients 0–14. The transformed spectrum was produced with the
BLT by setting� = 0:10.
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Figure 2: Original (thin line) and transformed (thick line) short-
term spectra for a male test speaker regenerated from cepstral co-
efficients 0–14. The transformed spectrum was produced with the
APT.

were generated from the first 15 components of the original cep-
stral sequence. The operations employed in calculating the trans-
formed cepstrâx[n] were those set forth in (17–18); the conformal
map used in this case was a bilinear transform with� = 0:10. It
is clear from a comparison of the respective spectra that all for-
mants have been shifted downward by the transformation and that
the extent of the shift is frequency dependent.

Shown in Figure 2 are the original and transformed spectra
for the same segment of male speech previously plotted in Fig-
ure 1. As in the prior case, these plots were generated from the
first 15 components of the original cepstral sequence, but 25 com-
ponents were retained in the transformed sequence. The conformal
map used in this case was a three-parameter APT with the form
given in (4). From the figure it is apparent that whereas the higher
formants have been shifteddown, the lower formants have been
shiftedup. This stands in sharp contrast to the effect produced by
the BLT, for which the shift depends on frequency but is always in
the same direction, and serves to illustrate the greater power and
generality of the APT.

3. SPEAKER ADAPTATION

For the purpose of speaker adaptation, we must associate the cep-
stral sequencex[n] appearing in (17) with the components of the
original mean�k of an HMM, and the sequencêx[n] with the
components of the transformed mean�̂k, such that

�̂kn =
L�1X
m=0

anm �km

whereL is the length of the original mean and the components of
the transformation matrixA = fanmg are given in (18). The first-
and second-order difference cepstra typically used in LVCSR sys-
tems can be transformed in the same way, as they are obtained from
appropriate linear combinations of successive cepstral features.

Prior to speech recognition, the transformation parameters�
must be estimated individually for each speaker in a test or train-
ing set. This is most easily accomplished through recourse to the
EM algorithm [4], whose application entails the estimation of an
auxiliary functionand its subsequent maximization with respect
to the transform parameters�. Consider a hidden Markov model
composed of thousands of individual states; with each state is as-
sociated a probability density function composed of several Gaus-
sian components. Letc(i)k denote theposterior probabilitythat
the cepstral featurex(i) was drawn from thekth Gaussian com-
ponent, and letck =

P
i c

(i)
k denote the total occupancy count

for this component over all frames in a setfx(i)g of enrollment
data; the severalc(i)k can be calculated via the well-known forward-
backward algorithm. Assuming all Gaussian components have di-
agonal covariance matrices of the form

Dk = diag
�
�2k0 ; �

2
k1 ; �

2
k2 ; : : : ; �

2
k;L�1

�
the requisite auxiliary function can be expressed as [7]

G(�) =
X
k

ck
X
n

1

�2kn

�
~�kn �

1
2
�̂kn(�)

�
�̂kn(�) (19)

where ~�
(s)
k =

�P
i c

(i)
k x(i)

�
=ck is the speaker-dependent (SD)

mean corresponding to thekth Gaussian component.
As there is no closed form solution providing that� = ��

which achieves a maximum on (19), it is necessary to use a nu-
merical optimization algorithm for this purpose. For the BLT, this
optimization devolves to a simple linear search; good results have
been obtained withBrent’s method[10, Section 10.2]. Estimation
of optimal parameters for general all-pass transforms can be ac-
complished with an algorithm based onconjugate gradients[10,
x10.6] orNewton’s method[5, x4.4]; expressions for the gradient
and Hessian required for either of these methods are developed
in [7].

4. SPEECH RECOGNITION EXPERIMENTS

The speech recognition experiments discussed below were con-
ducted using training and test material extracted from theSwitch-
board Corpus. Of the complete Switchboard Corpus, approxi-
mately 140 hours of data are set aside for system training. In
order to obtain fast turnaround, however, a subset of the full train-
ing set was identified and used in all speaker adaptation experi-
ments. This subset, dubbedMiniTrain, is composed of approxi-
mately 200 conversations providing a total of 18.6 hours of speech



% Word Error Rate
System Description 0.5 min. 2.5 min.
Baseline 48.9
BLT Adaptation 45.6 45.5
APT Adaptation 45.2 45.2
GMLLR Adaptation 46.2 45.6

Table 1: Results of lattice rescoring experiments comparing global
MLLR to BLT- and APT-based speaker adaptation schemes using
either 30 sec. or 2.5 min. of unsupervised enrollment data.

material. Approximately 100 speakers of each gender participate
in the MiniTrain conversations. The test set used in all experi-
ments was comprised of 19 Switchboard conversations, for a total
of 18,000 words.

The features used for speech recognition were composed of
mel-frequency cepstral coefficients 1–12 along with first and sec-
ond order difference coefficients derived from these. Parameters
corresponding to short-time energy and its first and second order
difference were also estimated, for a total feature length of 42.
The mel-frequency cepstral coefficients were calculated using the
waveform analysis tools provided with HTK, the Hidden Markov
Model Toolkit [12]. Cepstral mean subtraction was applied to the
features of the test and training sets on a per utterance basis; no
other feature normalization was applied.

All speech recognition experiments were conducted using a
hidden Markov model trained with cross-word triphones. Each tri-
phone in the model was composed of three states, and each state
was composed of nine Gaussian components. The standard HTK
implementation of the decision tree algorithm was used to gener-
ated the state clusters of the HMM. The final model was composed
of approximately 3,000 distinct states.

Table 1 provides the results of an initial set of speech recognition
experiments conducted to compare the effectiveness of the bilinear
and all-pass transform-based speaker adaptation schemes to that
of global MLLR adaptation. The results were obtained by rescor-
ing a set of lattices using an appropriately adapted SI model; the
lattices were generated using the un-adapted or baseline system.
Reported in the right-most column of Table 1 are word error rates
for all systems when an entire conversation side—approximately
2.5 minutes of unsupervised enrollment data—was used in esti-
mating the speaker-dependent adaptation parameters, a paradigm
typically referred to astranscription mode. During parameter es-
timation, the errorful transcripts obtained with the baseline model
were used for the requisite forward-backward passes. As is ap-
parent from the table, the 3.4% absolute word error rate (WER)
reduction provided by the BLT was nearly identical to that given
by global MLLR. The three-parameter APT scheme gave some
additional improvement, for a total WER reduction of 3.7%.

In a second set of tests, only 30.0 sec. of unsupervised en-
rollment data was used in estimating the adaptation parameters for
each test speaker. The results of these tests are given in the left
column of Table 1. Due to their extreme parsimony of parameter-
ization, the BLT and APT provided statistically identical perfor-
mance under both the 30.0 sec. and 2.5 min. test cases. The global
MLLR scheme, on the other hand, saw a substantial degradation.
The WER reduction provided by global MLLR 30 sec. of enroll-
ment data was 2.7%, while the three-parameter APT gave 3.7%
under equivalent conditions.

5. CONCLUSIONS

In this work, we have investigated the use of the bilinear transform
(BLT) as the basis of a speaker adaptation scheme, implemented
in order to improve the performance of a large vocabulary conver-
sational speech recognition system. We have also presented a gen-
eralization of the BLT, known as the all-pass transform (APT), and
compared its performance to that of both the BLT and to the well-
known maximum likelihood linear regression (MLLR) scheme.
Using test and training material abstracted from the Switchboard
Corpus, we conducted a set of speech experiments in which un-
supervised adaptation was performed on a speaker-independent
model. These experiments indicated that the performance of the
APT-based speaker adaptation schemes was comparable or better
to that of global MLLR when 2.5 min. of unsupervised enrollment
data was used for parameter estimation. When the enrollment data
was reduced to 30 sec., the APT-based scheme was substantially
better than GMLLR; the respective word error rate reductions in
this case were 3.7% and 2.7% beginning from an unadapted base-
line of 48.9%. Future work will investigate the effect of combining
the speaker adaptation schemes proposed here with other speaker
compensation techniques such as conventional vocal tract length
normalization [11] and speaker-adapted training [2].
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