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ABSTRACT

Superresolution reconstruction produces a high resolution image
from a set of low resolution images. Previous work on superres-
olution [3, 6, 10, 12] had not adequately addressed the computa-
tional issues for this problem. In this paper, we propose efficient
block circulant preconditioners for solving the regularized super-
resolution problem by CG. Effectiveness of our preconditioners is
demonstrated with superresolution results for a simulated image
sequence and a FLIR image sequence.

1. INTRODUCTION

In image superresolution we would like to reconstruct a high res-
olution image from a given set of low resolution frames. These
low resolution frames represent different ’looks’ at the same scene.
Each of these frames contributes new information which we can
use to interpolate subpixel values. To get different views of the
same scene, these low resolution frames must record some scene
motions from frame to frame. These scene motions can be due to
motions in the imaging system (e.g. satellite images) or motions
within the scene itself (e.g. surveillance camera). If these scene
motions can be estimated within subpixel accuracy, superresolu-
tion is possible.

2. THE MODEL

We model each low resolution image as a noisy, uniformly down-
sampled version of the high resolution image which has been shifted
and blurred [6]. More formally,

bk = DkCkFkx+ nk; 1 � k � p; (1)

wherep is the number of available frames,bk is anN � 1 vec-
tor representing thekth m � n (N = mn pixels) low resolution
image in lexicographic order. Ifl is the resolution factor in each
direction,x is anl2N � 1 vector representing thelm � ln high
resolution image in lexicographic order,Fk is anl2N � l2N shift
matrix which represents the relative motions between framesk and
a reference frame,Ck is a blur matrix of sizel2N � l2N , Dk is
N � l2N uniform down-sampling matrix, andnk is theN � 1
vector representing additive noise. We assume global translational
motions and that the matricesFk are known or can be estimated
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Figure 1: Superresolution model

by some image registration algorithm [2]. We will also assume
that the PSF which generates the blurring operator is known and
spatially invariant.

Figure 1 illustrates our model conceptually. A pixel value in a
low resolution frame is an “average” value over a box of pixels in
the high resolution image. In the figure, the (1,1) pixel of the low
resolution frame to the right is an “average” over the dashed box
while the (1,1) pixel in another frame an “average” over the solid
box. The relative motion shift from the dashed box to the solid
box is 1

2
low resolution pixel down and to the right. These low

resolution frames contribute different information about the high
resolution image. Combining the equations in (1), we have2
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b = Hx+ n:

(2)

If all possible combinations of subpixel horizontal and vertical
shifts are available, superresolution becomes a deblurring prob-
lem. In general, this is not the case, and the system of equations
above is underdetermined.

3. REGULARIZATION

The PSF is derived from the discretization of a compact operator,
soH is ill-conditioned [1]. Thus, even small changes inb can re-
sult in wild oscillations in approximations tox when (2) is solved



directly. To obtain a reasonable estimate forx, we reformulate the
problem as a regularized minimum norm system

(HH
T + �R)z = b;x = H

T
z: (3)

In this formulation,R serves as a stabilization matrix, and the new
system is better conditioned. While a simple and effective regular-
ization matrix can be the identityI, R can also incorporate some
prior knowledge of the problem, e.g. degree of smoothness [9].�

is the regularization parameter. A larger� corresponds to a better
conditioned system, but the new system is also farther away from
the original system we wish to solve. For the automatic calculation
of regularization parameter, see [7].

4. PRECONDITIONING FOR CG

Superresolution is computationally intensive. The number of un-
knowns, same as the number of pixels in the high resolution image,
is typically in the tens or hundreds of thousands. We must find ap-
propriate preconditioners for (3) to accelerate CG. To exploit the
structure ofH, we reorder the columns ofH and the elements ofx,
correspondingly, as follows. We partition the high resolution im-
agex intoN subimages each of sizel�l. We enumerate the pixels
in each subimage in lexicographic order 1 tol2. The desired or-

dering isq(1)1 ; :::; q
(1)
N ; q

(2)
1 ; :::; q

(2)
N ; :::; q

(l2)
1 ; :::; q

(l2)
N , whereq(j)i

is thejth pixel in theith subimage. From our spatial invariance
assumption of the PSF, the reordered matrixĤ has the following
form

Ĥ =

2
664

T11 T12 � � � T1l2
T21 T22 � � � T2l2

...
...

...
...

Tp1 Tp2 � � � Tpl2

3
775 ; (4)

where each blockTij is anN �N ’nearly’1 Toeplitz upper band
matrix. Because of the strong Toeplitz block structure in (4), we
can precondition by a circulant-type preconditioner [4]. In the fol-
lowing subsections, we will describe efficient preconditioners for
solving Toeplitz systems by CG. Extensions of these precondition-
ers and their convergence properties to regularized minimum norm
least squares system̂HĤT + �R for Ĥ; R with Toeplitz block
structure are straightforward [4].

4.1. Circulant Preconditioner

The first preconditioner, developed by Strang, completes the Toeplitz
matrixT by copying the central diagonals [5]. For an upper trian-
gular banded Toeplitz matrixT ,

T =

2
666664
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...

...
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...
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3
777775 ;

1Almost all entries along diagonals ofTij are constant.

the preconditionerCS has the form

CS =

2
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Next, we will describe our second preconditioner, developed by
Hanke and Nagy [8], for banded Toeplitz matrices.

4.2. Approximate Inverse Preconditioner

Our approximate inverse preconditioner to a banded Toeplitz ma-
trix TN�N with both upper and lower bandwidths less than or
equal tob is constructed as follows. First we embedT into an
(N + b)� (N + b) circulant matrixCHN

CHN =

�
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�
;
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Next, we partitionC�1
HN as

C
�1
HN =

�
M M12

M21 M22

�
;

whereM is theN � N leading principal submatrix.M is the
approximate inverse preconditioner toT .

5. RESULT AND DISCUSSIONS

Note that we do not actually need to construct these precondition-
ers explicitly, and operations involving circulant matrices can be
done efficiently by FFTs. Furthermore, we have the following re-
sult.

Theorem 1 LetT be an upper banded Toeplitz matrix with band-
width less than or equal tob, CHN be the nonsingular extension
of T , andCS be the circulant approximation toT as above. IfM
is eitherC�1

S or theN �N leading principal submatrix ofC�1
HN

then
MT = I +K;

where rank(K) � b:
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Figure 2: Superresolution on simulated sequence

The theorem above bounds the number of preconditioned CG it-
erations necessary for convergence. For any banded Toeplitz ma-
trix with bandwidthb, at mostb preconditioned CG iterations are
needed for convergence. This result is one of the main reasons
we chose our preconditioners over other circulant preconditioners,
which can only claim eigenvalues of the preconditioned system
“clustering” around 1 [4]. We can also bound the amount of work
to solve a banded Toeplitz system by CG toO(bN log(N)) with
Strang’s circulant preconditioner andO(b(N+b)log(N+b)) with
the approximate inverse preconditioner. In our experience, the ap-
proximate inverse preconditioner achieves slightly better perfor-
mance at marginally higher cost.

6. EXPERIMENTS AND CONCLUSIONS

The first test sequence consists of artificially generated low res-
olution frames. We blurred a single172 � 172 pixels image by
a 4 � 4 Gaussian PSF with standard deviation of 1 and down-
sampled to produce 16,43� 43, low resolution frames. We added
normally distributed white noise at 22.7 dB to these frames. Using
9 randomly chosen out of the complete set of 16 frames, we re-
constructed the original high resolution image. Figure 2 presents
the results from our superresolution algorithm. The top left por-
tion displays the low resolution images, the top right the result of
bilinearly interpolating one low resolution frames by a factor of 4
in each dimension, the bottom left the result from superresolution
after 6 iterations, and the bottom right a comparison of number of
CG iterations for unpreconditioned and preconditioned system to
reach relative residual tolerance of10�3 and with regularization
parameter� = 0:01. To reach tolerance threshold, 6 iterations of

preconditioned CG are required for either preconditioners while
26 iterations are required for unpreconditioned CG.

The low resolution FLIR images in our second test sequence are
provided courtesy of Brian Yasuda and the FLIR research group in
the Sensors Technology Branch, Wright Laboratory, WPAFB, OH.
Results using this data set are also shown in [10]. Each image is
64� 64 pixels, and resolution enhancement factor of 5 is desired.
The objects in the scene are stationary, and 16 frames are acquired
by controlled movements of the FLIR imager. Figure 3 has similar
arrangements as the previous figure. For this sequence, we again
set relative residual tolerance to10�3 and use regularization pa-
rameter� = 0:01. Ten iterations are required for preconditioned
CG with either preconditioners versus 28 for unpreconditioned CG
to reach tolerance threshold.

For both image sequences, preconditioned CG takes about1
3

the
number of iterations of unpreconditioned CG. The savings are even
better for smaller regularization parameter�. Typically, we stop
after 5 preconditioned CG iterations because results obtained there-
after are not significantly different visually. By these experiments,
we have demonstrated that with the use of appropriate precon-
ditioners, image superresolution is computationally much more
tractable.
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Figure 3: Superresolution on FLIR sequence
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