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ABSTRACT

We introduce binary locally monotonic regression as a first step
in the study of the application of local monotonicity for image
estimation. Given an algorithm that generates a similar locally
monotonic image from a given image, we can specify both the
scale of the image features retained and the image smoothness.
In contrast to the median filter and to morphological filters, a
locally monotonic regression produces the optimally similar
locally monotonic image. Locally monotonic regression is a
computationally expensive technique, and the restriction to
binary-range signals allows the use of Viterbi-type algorithms.
Binary locally monotonic regression is a powerful tool that can
be used in the solution of the image estimation, image
enhancement, and image segmentation problems.

1. INTRODUCTION

Local monotonicity is a natural criterion for a
performance measure for signal enhancement: impulses are
not locally monotonic while edges are locally monotonic.
The quality of local monotonicity first emerged in the
study of root signals of the median filter. Given that the
median filter is a suboptimal smoother under this criterion
and that it is widely used in image processing, the study of
locally monotonic (lomo) regression for images is of
critical importance. A lomo regression [1] image is the
closest image (under a semimetric) to a given input image
that is lomo.
The main drawback of lomo regression is the high
computational cost. Several efforts have been extended
recently to decrease the complexity of the task [2], [3]. As
Siridopoulos [3] has pointed out, the consideration of
digital signals allows the use of Viterbi-type algorithms
[4]. For 1-D signals, the complexity of these algorithms is
linear with respect to the length of the signal.

This paper explores 2-D binary lomo regression.
For an N by M binary image, we use the set of 1-D lomo
signals of length N to compute a regression with a Viterbi
algorithm, using a queue of lomo rows for the states in the

Viterbi trellis. The resulting image is binary, lomo in the 2-
D sense, and optimal in distance from the original image.

In Section 2 we compute the number of lomo
signals of a given length, and indicate how to generate
them. In Section 3 we give short definitions of 2-D local
monotonicity and describe the algorithm used to compute
the regression. Section 4 provides representative examples.
The paper is concluded in Section 5.

2. 1-D BINARY LOMO-3 SIGNALS

Let 1N = {0, 1} {0, 1, ... N-1} be the set of {0, 1}-
valued signals of length N. The set of locally monotonic
signals of degree α (lomo-α) contains signals in which
each segment (contiguous subsequence) of length α is
either non-increasing or non-decreasing. Let Λ denote the
subset of lomo-3 binary signals; that is, signals with no
segment equal to [0, 1, 0] or [1, 0, 1].

The tree in Fig. 1 indicates how the signals in Λ
may be generated. Each node in the tree corresponds to a
lomo-3 signal; the components of the signal are given by
the labels of the nodes, read from left to right, of a path
connecting the root ∆ of the tree and the node in question.

The cardinality of Λ depends on the length N of
the signals. After the first two columns at the root of the
tree that contain the "border effects" at the left of a signal,
a node branches either into one or two branches.
Depending on the last two bits (at the right) of the
corresponding signal, we classify the nodes in the tree into
four sets: m1, m2, n1 and n2. The signals corresponding to
nodes in m1 end with two zeros; signals in m2 end with the
segment [1, 1]; signals in n1 end with [0, 1], and signals in
n2 end with [1, 0]. Nodes in sets m1 and m2 branch into two
branches, since either a zero or a one may be appended at
the right of the signal to insure local monotonicity. Signals
(binary strings) corresponding to nodes in sets n1 and n2
can only be grown by appending a 1 or a 0, respectively,
since [0, 1, 0] and [1, 0, 1] violate monotonicity. A signal
in set m1 to which a 1 is appended becomes a signal in set
n1. If a 0 is appended, it remains in set m1. A signal in set



m2 to which a 0 is appended becomes a signal in set n2. If a
1 is appended, it remains in set m2, etc. This classification
process is illustrated in Fig. 2.
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Fig. 1. A tree in which each node represents a binary lomo-3
signal.

Based on these considerations, the binary strings
in each set, as the length is increased by one element,
change as illustrated in Fig. 3. Let m = m1 + m2 and n = n1
+ n2. After successively increasing the length of the signals
under consideration the numbers evolve as illustrated in
Fig. 3. A new value for m is given by the previous m + n
and a new n by the previous m. As shown below, we may
think of the vector [n m]T as evolving by the repeated
application of a linear transformation.
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Fig. 2. Valid transitions that increase binary signal length (as
elements are appended on the right).
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Fig. 3. A stage of an iteration shown in Fig. 4.

Since lomo regression is the process of finding
the closest signal to a given signal that resides in the set of
lomo signals, it is of interest to compute the cardinality of
this set. Here, the number of lomo signals of length N is
given by

η(N) = mN + nN (2)
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The matrix m can be decomposed as:
    m = pT d p, (3)

where d is a diagonal matrix, with the eigenvalues of m on
the diagonal and p is unitary. Since,

     mr = pT dr p (4)
where
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and the eigenvalues of m are given by  λ1, 2 = 0.5 ± 0.5 5 .
Then, the number of binary lomo-3 signals of length N is

    η(N) = 2 [λ1
(N −2)

 (
5

2
1− ) + λ 2

(N −2)
 (

5

2
1+ )]. (6)

A similar line of reasoning may be used to obtain
a formula for the number of lomo-α signals given α larger
than 3.

TABLE I
N # lomo-3 signals # signals
1 2 2
2 4 4
3 6 8
4 10 16
5 16 32
6 26 64
7 42 128
8 68 256
9 110 512
10 178 1024

Table I indicates both the cardinality of the set of
lomo signals and the total number of binary signals. One
may observe that the percentage of lomo signals tends to
zero as the image size is increased.

3. A VITERBI-TYPE ALGORITHM FOR
2-D BINARY LOMO REGRESSION

Consider an NxM binary image, that is, an

element of 1
NxM

 = {0, 1} 
{0, 1, ... N-1}x{0, 1, ... M-1}

 with
N ≤ M. Note that we do not require images to be square.

We now clarify the definition used for 2-D local
monotonicity. In defining 2-D local monotonicity, we use
the variants strong and weak. Strong local monotonicity of
degree α (LOMO-α) means that the image is lomo-α in the
1-D sense along each defined direction. Weak local
monotonicity of degree α (lomo-α) infers that the image is
lomo-α along at least one direction at each point in the
image. The number of directions used also influences the
definition of local monotonicity. When the horizontal,
vertical and diagonal directions are considered, we have
LOMO*-α images in the strong case and lomo*-α images
in the weak case. When only horizontal and vertical
orientations are considered, we have LOMO+-α and lomo+-
α images. For each type of local monotonicity there is a
corresponding regression. A lomo regression is a lomo

image that is optimally close to a given image, under a
given semimetric.

For lomo-α regression (in general), each state in
the trellis [4] of the Viterbi algorithm consists of an image
with α–1 lomo-α rows: α–2 previous rows including an
oldest row, and one current row, each of length N. Thus,
since there are η possible 1-D lomo signals of length N,
the height of the trellis is η2. The width of the trellis is
given by M–α+2.

A transition from a previous state to a destination
state is valid (and has a null transition cost) if the previous
rows of the destination state correspond to all but the
oldest row of the previous rows in the destination state,
and the addition of a new 1-D lomo row (the current row
of the destination state) gives a lomo image segment, of
size Nxα. Otherwise, the cost is set to be infinite, and the
transition is said to be invalid.

As the trellis is traversed with the consideration of
each row of the image being regressed, the paths are
pruned by computing the survivor paths with minimal cost
that arrive at each state. The state cost is given by the
number of bits in which the current row of the state differ
from the corresponding row of the image being regressed
(the Hamming distance, for example). Once a trellis is
generated, the paths of minimal cost give the regressions of
the image. A "depth first" technique may be used for the
fast computation of one regression and a "breadth first"
technique for finding all regressions.

As compared to an exhaustive search technique,
the Viterbi method is quite efficient. For example, on a
233MHz Pentium II computer, a 4x5 binary LOMO*-3
regression required 6,465 seconds (over 1.5 hours) using
exhaustive search and just 0.8 seconds using the Viterbi
approach!

4. EXAMPLES

Two examples of LOMO*-3 regression are
presented, using the images in Fig. 4(a) and Fig. 5(a) as
input images. The resultant images are LOMO*-3 and
resemble the respective input images (see Fig. 4(b) and
Fig. 5(b)). The Hamming distances from the input images
are given in Table II.

Typically, a median filter is used to produce lomo
signals in 1-D. In this case, the 2-D median filter does not
give a LOMO*-3 image, and the error (Hamming distance)
is almost twice that of the regression results in both cases.
Another filter used to produce lomo signals in 1-D is the
morphological open-close filter. For the 2-D examples
given here, the open filter results (Fig. 4(d) and Fig. 5(d))
and the close filter results (Fig. 4(e) and Fig. 5(e)) are
clearly unrepresentative of the input images. Furthermore,
the open filter is biased toward the removal of isolated 1's
and the close filter is biased toward the removal of isolated



0's. The open-close filter results are less biased, but are
over-smoothed and bear no semblance to the original data.
Thus, the lomo regression results are superior in terms of
removing small features and producing a result that
resembles the input imagery.
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Fig. 4. A 5x5 binary image example (black = 1, white = 0).
(a) Original image; (b) a LOMO*-3 regression; (c) 3x3 median
filter result; (d) open result (2x2 structuring element (SE)); (e)
close result (2x2 SE); (f) open-close result (2x2 SE).

TABLE II
Processing
Technique

Error
5x5 Ex.

Error
8x16 Ex.

LOMO*-3 Regression 4 28
Median Filter 9 48
Open Filter 13 63
Close Filter 12 62

Open-close Filter 15 68

5. CONCLUSION

We have taken a first step in the solution of the
problem of locally monotonic regression for images. The
consideration of binary signals allows the use of a Viterbi
algorithm. We are currently exploring the relationship of
binary lomo regression with binary morphology with the
goal of developing lomo regression as a shape-preserving,
optimal smoother for images. Also, we are investigating
practical lomo regression algorithms for gray level images.

Both lomo regression and the median filter can be
used to denoise imagery and produce an image
representation of a prescribed feature scale. Lomo
regression is superior in terms of giving the closest lomo
signal and removing alternating patterns due to image
texture. The optimal 2-D regression approach can be used
as a precursor to higher level image processing problems
such as image segmentation and multiscale image coding.
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Fig. 5. An 8x16 binary image example. (a) Original image; (b) a
LOMO*-3 regression; (c) 3x3 median filter result; (d) open result
(2x2 SE); (e) close result (2x2 SE); (f) open-close result (2x2
SE).
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