
A COMPLETE DEVELOPMENT ENVIRONMENT FOR
IMAGE PROCESSING APPLICATIONS ON ADAPTIVE

COMPUTING SYSTEMS
A. Christopher Moorman, and Donald M. Cates, Jr.

Khoral Research Inc.
6200 Uptown Blvd. NE Suite 200
Albuquerque, NM 87110, USA

ABSTRACT
Adaptive computing has always been a topic of great interest,
providing a means to automatically map an application to
specific hardware. The hardware may be configured to a specific
application, thereby providing optimal performance. However,
the largest benefit is that this configuration may be performed
optimally during program execution. Unfortunately, adaptive
computing is a relatively new area of research, therefore
imposing serious complications when developing applications
for adaptive hardware. This problem limits ACS development to
hardware experts, prohibiting application specialists, such as
image processing experts, from utilizing these systems. This
paper will discuss a development environment that can bring the
world of ACS application development to the IP expert with
minimal hardware knowledge.

1. INTRODUCTION

While significant research has been done trying to utilize
Adaptive Computing Systems (ACS), it has generally been
approached as being a strict hardware problem. The number of
tools to support application development on adaptive systems is
minimal, thereby limiting their acceptance within the technical
community. Until recently, the ability to develop applied
solutions such as image processing applications on these systems
was considered to be impractical, and rarely considered due to
the limited resources available to support the development
process for these systems.

Adaptive computing systems, commonly referred to as re-
configurable systems, are generally made of integrated circuits
called Field Programmable Devices. In particular, Field
Programmable Gate Arrays (FPGAs) have been used extensively
for military and commercial applications. They have been
important particularly in research applications, because they offer
low start-up costs and allow for design changes to be made
easily. Such design changes would not be possible with fixed
hardware systems. The standard FPGA consists of a block of
logic devices spread out over a large mesh of connections to each
element [5]. These logic elements are then surrounded by a
series of I/O devices that connect to the chips interface pins. The
advantage of these systems is that the user now has a chip that is
capable of being programmed to perform the functionality of
choice. The user has the ability to specify which connections are
to be made and what functions are to be performed by each logic
element. One problem is that these FPGAs are programmed via a
series of configuration codes, which is currently done through

hardware descriptive languages such as VHDL [1]. These
languages work well to program control logic for complex logic
devices, but, they become extremely complex when developing
applied applications such as image processing. This means that
an image processing expert would need to become a hardware
expert to take advantage of these re-configurable systems without
a friendlier development environment.

To bring these systems within reach of applications
programmers, the development environment has to handle any
hardware issues. In particular, for image processing applications,
a image processing development environment would is needed.
A major tool for image processing applications today is a visual
programming environment. These visual environments allow
users to construct complex applications via the connection of
basic operations. This level of programming removes any lower
abstraction layers, including machine level programming,
allowing the IP designer to focus on the specific application.
One such development environment is Khoros. While Khoros
provides a visual programming environment, it also provides
CASE (Computer Aided Software Engineering) tools to support
the complete development process.

It should be obvious to the reader that visual programming
environments will not entirely bridge the gap between this
advanced hardware and true image processing applications.
Additional steps must be taken. One such step is the advent of a
new language called SA-C (Single Assignment C). While SA-C
is actually a subset of C and not really a new language, it should
be viewed as a tool to achieve the final goal, that of bringing re-
configurable hardware to the IP developer. SA-C will provide a
means of linking the FPGA hardware to the visual programming
environment provided by Khoros, as will be shown later in this
paper.

At this point, it is important to note why Image Processing has
been chosen as the specific application area. In order to show
this, a short explanation of some image processing issues is in
order. Image processing applications generally operate on large
images, requiring extremely fast throughput. Sometimes, even
real-time throughput is required. Adaptive systems are capable
of achieving this type of performance. In addition, their
architecture is such that a user can extract parallelisms from the
specific application. This allows a user to exploit the inherent
parallelisms present in these windowing-type operations.
Adaptive hardware systems also allow users to optimize
performance by rearranging specific image operators to minimize
data flow. The visual programming environment and
performance monitoring could be used to achieve a reduction in

data flow and achieve enhanced performance from the
application level, thereby, hiding any hardware details from the
IP expert.

This paper discusses the details of Khoros, the development
adaptive computing environment, SA-C, the language required to
map an application to the FPGA hardware, and the overall design
process to support adaptive computing systems.

2. Khoros Development Environment
Khoros is a complete software integration and development
environment, providing development tools, a visual
programming environment to support execution, as well as
extensive libraries to support image and signal processing. These
development tools support multi-language applications in an
object-oriented fashion, allowing users to organize their
applications into toolboxes. The cross-platform support,
including numerous workstations, embedded platforms, and the
HPC (High Performance Computing) arena, allow users to
migrate their existing applications with minimal effort.

Khoros has been used for a wide variety of applications, ranging
from Automatic Target recognition (ATR) and
hyperspectral/multispectral imaging to medical and biological
imaging. Khoros provides a significant number of utilities to the
programmer, removing several abstraction layers and supporting
many layers of programming. The developer has the option of
programming at whichever level they prefer. An example is the
ability to develop parallel algorithms within Advanced Khoros
with minimal knowledge of MPI (Message Interface passing).
Khoros provides data model support, allowing a user to work
with input as objects, removing all file handling and memory
management from the programming task. It also provides
streaming models that may be used if performance is of a
concern. The significant number of utilities within Advanced
Khoros is only part of the complete development environment.
The execution and development tools provide complete
integration, maintenance and development support. The next
sections discuss what each of the tools brings to the development
process[4].

2.1 CASE Development Tools

The development tools provided within Khoros give the user the
ability to develop, manage, and maintain complex software
applications. The complete development suite consists of tools
called Craftsman, Composer, and Guise.

Craftsman brings maintenance and management functionality to
the software application, providing functions such as object
creation, deletion, re-naming, and attribute modification, to name
a few. Composer provides advanced functions to a specific
software object, allowing users to edit source, generate code,
compile the existing application and modify the GUI (Graphical
User Interface). Guise, which allows the user to create and
modify the applications GUI, provides a graphical representation
of the UIS (User Interface Specification) under development.
These tools are capable of supporting numerous languages and
object types within Advanced Khoros, allowing a user to develop
applications for even new languages, such as SA-C, or any user-
created languages. The developer need only add the source

necessary to provide the needed functionality. The tools will
handle the remaining tasks.

With this environment, the user now has the ability to develop,
maintain, and manage these SA-C algorithms for the FPGA
hardware. The only remaining concern is the method of
execution provided by the visual programming environment.

2.2 Visual Programming Environment

Cantata provides a visual programming environment to the
developer’s applications. This visual environment provides a
user with the ability to interconnect a series of basic routines, or
primitives, which could be used to develop larger and more
complex applications. By providing the visual interface, the
developer has the ability to rearrange an application based on
performance or functionality or even hardware limitations. An
example of Cantata can be found in figure 1.

Figure 1. An sample of a workspace in the visual
programming environment, Cantata, provided within
Advanced Khoros.

In addition to providing a means of visual optimization for
applications, visual programming also abstracts lower
programming levels from a user, allowing applied experts to
develop context specific applications with little or no
programming knowledge. Image processing experts can develop
complex image enhancement and recognition applications
without writing a single line of code.

Additional Benefits to a visual programming environment:

• Abstraction of low-level programming.
• Abstraction of hardware programming
• A means for visual modification and optimization.

Cantata also hides any hardware and execution concerns from the
developer while providing multi-architecture support and
distributed computing capabilities.

An ATR workspace using SA-C routines is displayed in figure 1.
The execution of these routines is currently on the local-host.
The ability to execute SA-C objects on the FPGA hardware is
still under development. The user will ultimately have the option
of executing these routines locally as well as on the embedded
systems. This capability allows the image processing expert to
utilize existing SA-C library routines within Cantata, develop the
IP application, and execute these routines on the FPGA without
knowledge of the hardware.

Profiling and benchmarking capability will also be added to
Cantata, providing visual performance feedback. This will allow
users to modify the hardware mapping process or to identify any
bottlenecks within the application. Additional information on
this topic can be found in Section 4.

3. SA-C Single Assignment C
Single Assignment C (SA-C), was developed to minimize the
problems associated with the hardware mapping procedure.
While it is true that SA-C is a subset of C, it is important to note
that it has been enhanced to truly support IP applications. The
functionality removed was due to hardware mapping issues. The
next sections discuss why SA-C was created and how it has been
enhanced to support IP applications.

3.1 Language Overview

To help understand why SA-C was created, a list of objectives is
shown below [2]:

• Efficient Expression of IP Constructs.
• Tailored to ACS Platforms.
• Ease of use.

These three objectives, taken together, express the point that SA-
C was developed to bring the IP and Adaptive Computing
communities together.

The ability to support multidimensional arrays is crucial in IP
applications. The ability to access sub-structures within large
images is also important for window-based and template-based
procedures. SA-C addresses both of these issues while
providing a significant number of statistical operations over
multiple regions of the images.

As mentioned earlier, there are a significant number of problems
that occur when mapping software to FPGA hardware. To
eliminate some of these problems, certain features of the C
language were removed from SA-C. For example in SA-C, only
single assignment is allowed, and no pointer or recursion is
supported. In addition, SA-C was developed to support the
notion of Data Flow Graphs (DFG’s), which are used for
hardware mapping.

Finally, SA-C had to be easy to use before any real acceptance
could be realized. Therefore SA-C follows the C syntax. In
addition, it can be called from C and C++, and with the
integration of SA-C into Khoros, a complete development
environment has been created.

It is important to stress that SA-C is not an inferior language. In-
fact, quite the opposite is true. Reassignment, pointers, and
recursion are lost, but true IP support is gained. C provides

minimal support of multiple dimensional arrays by allowing
arrays of arrays requiring a series of mallocs, with no real data
access methods. Users are forced to control data access,
boundary conditions and overlapping. SA-C hides all this from
the user, allowing the user to access images as windows at any
focus within the complete image. Since SA-C controls the data
access methods, it is capable of exploiting parallelisms that may
be present for a specific application.

Finally, C does not provide multiple-bit precision, which SA-C
does. Multiple-bit precision is crucial for optimized FPGA
applications. Multiple-bit precision supports proper resource
allocation by utilizing the necessary hardware to support minimal
bit precision.

3.2 Image Processing Features

As mentioned earlier, image processing applications are
generally window-oriented or template-oriented. Many of the
operations such as convolution and basic filtering are kernel
based. This type of manipulation is data intensive, requiring a
significant number of data retrievals. SA-C handles all of the
data access and allocation, allowing users to manipulate images
using stencils, windows, and slices within an image. This
capability allows for complex routines like convolution to be
implemented with only a few lines of code. Looping constructs
have been enhanced to support specific data acquisition
procedures, significantly reducing the amount of code needed for
data access.

Another important feature required within image processing is
the generation of image statistics. A significant number of
statistical methods have been incorporated within SA-C. Some
of these include scalar reductions like min, max, median, and
mean, as well as advanced measures like histogram statistics.
SA-C supports statistical operations on a complete image, or on
portions or regions within the image. This functionality actually
gives SA-C the appearance of a higher level language, allowing
users to specify operations with mere key words rather than
lengthy function calls or code segments.

4. Complete Development Procedure
The details of some items from the development environment
have been presented, and to some, it may be apparent that the
notion of hardware mapping has not been addressed at this point.
The integration of SA-C and Khoros provide the complete
environment to the standard applications developer. These tools
provide a means of developing complex image processing
applications with SA-C, and executing them locally from within
Cantata. In addition, if pre-compiled versions exist for the FPGA
hardware, the user can execute these rather than the local
versions within Cantata.

The intention is to provide a user with a complete development
system, which means the IP applications should be executable
locally, executable on the FPGAs using pre-compiled versions of
the software, and executable on FPGAs using no pre-compiled
versions. The first two methods of development and execution
are specifically designed for the image processing expert. They
require little or no hardware knowledge. The final step in the
development process is the development of these pre-compiled

libraries. While hardware knowledge is required for this step, it
is merely from a optimization standpoint rather than a
development standpoint. The complete development process is
be shown in figure 2 shown below[2].

SA-C
DDCF

Data Dependance
Control Flow

DFG
Data Flow Graph

VHDL
Very High Definition

Language

Configuration
Codes

ACS

Verification by tradition
C execution

Compiled Simulation ACS Execution

OBJ

C

OBJ

OBJC

Figure 2. ACS Design Flow Diagram.

The initial branch of the SA-C block is what is achieved by the
integration of SA-C with Khoros. This provides the user with
the ability to execute on a local host. The SA-C source is
compiled to a standard C version, which is compatible with
Khoros, thereby providing portability across multiple platforms.

The remainder of the design process provides optimization and
hardware mapping to the ACS platform. It is believed that the
optimization and mapping can be efficiently done through the
use of Data Flow Graphs (DFGs) and Data Dependence and
Control Flow Graphs (DDCFs).

The DDCF graph provides an efficient means to make
optimizations to the source. Some of these would include loop
fusion, unrolling, and reordering. In addition to optimizations, it
provides an optimized source to the DFG.

The lower branch immediately after the DDCF in figure 2
provides a means of optimizing the SA-C application. The tools
will be modified to support the visual modification of this
DDCF. The optimized code can then be compiled down to the
local hardware or the ACS. This capability is extremely
important in evaluating the performance achieved after
optimization. A visual representation of the performance
measures and benchmarking will also be added to Cantata,
providing additional performance feedback.

The top branch of figure 2 is representative of the complete
development process. The previous two methods mentioned
were developed to bring the adaptive computing systems within
reach and to reduce prototyping and application development
time. This last step is representative of the ground up
development process.

After the DDCF graph, the process flows into the DFG. This
step provides an additional level of optimization from a different
perspective. These are actually a flatter version of the DDCF.
This is the point where machine-specific transformations occur.

It should be apparent that some sort of hardware language would
be required to get to the FPGA level. The design process will
now have several options at this point, the utilization of pre-
compiled VHDL and macros, or the generation of completely
new VHDL source. The latter opinion would add significant
compilation time to the development process but would allow for
efficient VHDL to be generated for the users specialized image
processing applications.

5. SUMMARY

The goal of this project is to provide a complete design
environment for the image processing expert which could be
used to develop applications for adaptive computing systems.
The integration of the SA-C language with Khoros provides such
an environment. Khoros brings the tools needed to develop,
manage and maintain software objects, while providing a means
of execution via a visual programming environment. The SA-C
language provides advanced functionality specifically designed
for image manipulation and image processing applications.
When these are combined with pre-compiled SA-C libraries for a
specific FPGA hardware, IP experts can develop complex IP
applications with no hardware knowledge. The execution of
these applications is supported within Cantata locally or on the
FPGA hardware. This part of the design process will
significantly reduce prototype and development time of IP
applications on the FPGA, as well as making it possible for IP
designers to utilize this advanced hardware.

The development of these SA-C libraries and routines for the
FPGA is accomplished via the DFG and DDCF graphs.
Optimized VHDL is generated from these graphs, which is then
directly mapped to the hardware by using the FPGA vendor-
supplied software. This portion of the development process is
somewhat time consuming, and requires additional compilation
time. However, the time should be reduced due to the generation
of optimized VHDL. Both methods combined, provided a
complete IP development solution while reducing development
time and improving performance of generated applications.

6. REFERENCES
[1] D. Perry. VHDL. McGraw-Hill, 1993.
[2] Najjar W., Bohm W., Draper B., and Beveridge R.

“Optimized Compilation of Visual Programs for Image
Processing on Adaptive Computing Systems”. Cameron
Project Kickoff Presentation, Washington D.C., USA, 1998,
pages 3-4.

[3] Bohm W. “The Sassy Language - Version 0.6”. Colorado
State University web page:
http://www.cs.colostate.edu/bohm/, 1998.

[4] Khoral Research’s development research web page:
http://www.khoral.com, 1998.

[5] Hammes J., Draper B., and Bohm W. “Sassy: A language
and optimizing compiler for image processing of
reconfigurable computing systems”. Colorado State
University: http://www.cs.colostate.edu/bohm/, 1998.

[6] Microsoft Research’s Speech Technology Group web page:
http://www.research.microsoft.com/research/srg/.

