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ABSTRACT

Most eigenstructure-based blind channel identi�cation and
equalization algorithms with second-order statistics need
SVD or EVD of the correlation matrix of the output signal.
In this paper, we show new algorithms based on QR factor-
ization of the output data directly. A recursive algorithm
is developed by updating a rank-revealing ULV decomposi-
tion. Compared with existing algorithms in the same cat-
egory, our algorithm is computationally more e�cient and
numerically (potentially) more robust. The computation in
each recursion of the recursive algorithm can be reduced
to the order of O(m2) under some simpli�cations, where m
is the dimension of the received signal vector. Numerical
simulations demonstrate the performance of the proposed
algorithm.

1. INTRODUCTION

Blind equalization of transmission channels is important in
many communication and signal processing applications be-
cause only some known statistical properties of the trans-
mitted signals are required. Using cyclostationarity of the
channel output, it has been shown that the second-order
statistics contain su�cient information for the identi�ca-
tion and equalization of �nite impulse response channels
[1]. Existing second-order statistics-based approaches usu-
ally require singular value decomposition (SVD) or eigen-
value decomposition (EVD) of the output correlation ma-
trix [1], [2]. The computation burden of SVD or EVD turns
out to be a major obstacle to real time implementation.
Although some updating schemes have been proposed that
produce an approximate singular value decomposition with
computation O(m2), they can only be used to reduce com-
putation of the �rst SVD (EVD) of [1] and [2]. The total
computation of these two algorithms remains O(m3).

It is shown in [5] that QR factorization of the received
data is in the same spirit of SVD or EVD of the output
correlation matrix, thus can be used to identify the chan-
nel implicitly based on second-order statistics. Based on it,
we will develop a recursive algorithm using rank-revealing
ULV decomposition in this paper. The computation of each
recursion can be reduced to O(m2) under some simpli�ca-
tions.

This work is supported in part by the o�ce of Naval Research
under Grant N00014-96-1-0241.

In section 2, we brie
y review the QR factorization
approach of [5]. Then in section 3 we present in detail
the rank-revealing ULV decomposition to derive a recursive
identi�cation algorithm.

2. BLIND CHANNEL IDENTIFICATION AND
QR FACTORIZATION

2.1. Problem Formulation

When the channel is time invariant, the received complex
baseband signal x can be expressed as

x(t) =

1X
k=�1

skh(t� kT ) + n(t); (1)

where sk denotes the symbol emitted by the digital source
at time kT , h(�) the discrete-time channel impulse response,
T the symbol interval and n(�) the additive noise.

We assume throughout this paper that i) the input se-
quence sk is stationary with zero mean and Efsks�l g =
�(k � l), ii) the noise n is stationary with zero mean and
white with variance �2, iii) s & n are uncorrelated, and iv)
the channel impulse response h(�) is of �nite duration.

In the vector representation, we have

x(iT ) = Hs(iT ) + n(iT ); i = 0; 1; � � � ; (2)

where x(iT ) and n(iT ) are m-dimensional vectors formed
from the m samples of x(�) and n(�) inside the interval
(t0 + iT; t0 + iT +m�), where � = T=L is the sampling
interval and the integer L denotes the number of samples
in each symbol interval. Assume L < m. H is the matrix
representation of the channel with dimension m� d as

2
4

h(��K0T ) � � � h(�� (K0 + d� 1)T )
...

...
h(m��K0T ) � � � h(m�� (K0 + d� 1)T )

3
5 : (3)

We assume m � d and that H has full column rank. The
relations between h and H are discussed in [1]. s(iT ) is a
d-dimensional vector consisting of symbols that have \con-
tributions" to the received signal inside the observation in-
terval (t0+iT; t0+iT+m�). In other words, at time t0, the
received signal contains information of symbols from K0 to
(K0 + d� 1).



Let fxi : i = 0; 1; 2; � � �g denote the sampled data se-
quence, xi = x(t0 + i�), then we have

x(iT ) = [ xiL xiL+1 � � � xiL+m�1 ]
H (4)

where xiL+k = x(t0 + iL�+ k�) = x(t0 + iT + k�) is the
(iL+ k)th sampled data.

To simplify the presentation, we ignore the noise for
the moment. Let Rx(k) denote the correlation matrix of
the output data vector x.

Rx(k) = E[x(iT )xH((i� k)T )] (5)

Since x(iT ) = Hs(iT ), we have

Rx(0) = HHH ; Rx(1) = HJHH (6)

where J is a d� d \shifting" matrix

J =

2
66664

0 0 � � � 0 0
1 0 � � � 0 0
0 1 � � � 0 0
...

...
0 0 � � � 1 0

3
77775 :

The identi�ability of the channel is given by the follow-
ing theorem.

Theorem 1 [1]: SupposeH is anm�d complex matrix
of full column rank. Then H is uniquely determined up to
a constant by Rx(0) and Rx(1).

2.2. QR Factorization of Output Data Matrix

The output data block matrix is formed by stacking the
sampled data vector

XN;m(0) = [ x(0) x(T ) � � � x((N � 1)T ) ]H (7)

The �rst subscript denotes the number of rows while the
second subscript is the number of columns. The argument
in parentheses denotes the subscript of the �rst entry. Con-
sidering the sampled data is cyclostationary with period T ,
we manipulate data with L samples as a set. When N is
su�ciently large,

1

N
[(XN;m(0))

HXN;m(0)] = HHH (8)

1

N
[(XN;m(L))

HXN;m(0)] = HJHH (9)

In order to perform QR factorization of XN;m(0) and
XN;m(L) at the same time, we construct the following ma-
trix,

XN;L+m(0) = [ XN;m(0)
... XN;L(m) ]: (10)

From (10) we see XN;m(0) has rank d with d � m. Per-
forming QR factorization with column pivoting to XN;m(0)
and apply the same factorization to XN;L(m), we have [5]

QHXN;L+m(0)

�
� 0
0 IL

�
=

2
4 R11 R12

... R13

0 0
... R23

3
5
(11)

where R11 is upper triangular and nonsingular with dimen-
sion d� d.

Theorem 2 [5]: Let

R1 = [ R11 R12 ]�
H ; R2 = [ R1s R13]; (12)

where R1s is a submatrix consisting of the last m � L
columns of R1. Then

HHH =
1

N
RH

1 R1; HJHH =
1

N
RH

2 R1: (13)

3. RECURSIVE ULV-BASED ALGORITHM

3.1. Updating Rank-Revealing ULVDecomposition

Based on Theorem 2, we developed a block QR factorization
based algorithm for channel identi�cation and equalization
in [5], which has computation complexity of O(Nm2+md2).
Using rank-revealing ULV decomposition, we will develop a
recursive algorithm with computation complexity O(dm2),
and even O(m2). We will also show that the recursive algo-
rithm can track channel variations quickly and e�ciently.
Hence it is more suitable for real time implementation.

Theorem 4: Given XN;L+m(0), there exists an N �N
orthonormal matrix U, an m � m orthonormal matrix V
such that

UHXN;L+m(0)

�
V 0
0 IL

�
=

2
4 T11 0

... T13

0 0
... T23

3
5 ;
(14)

where T11 is d� d lower triangular, T13 is d� L.
Proof: Denoted as rank-revealing ULV decomposition

in [3],[4], there exist orthonormal matrices U and V such
that

UHXN;m(0)V =

�
T11 0
0 0

�
4
= T: (15)

Let
UHXN;L(m) = [ TH

13 TH
23 ]

H ; (16)

we proved Theorem 4. 2

We brie
y summarize the implementation of ULV in our
case. Details about the decomposition and rank determi-
nation can be found in [3], [4]. We assume the sampled
signal contains noise. In order to track possible channel
variations, we have to phase out old data gradually. Hence
a factor 
 � 1 is used. Suppose at iteration i, the decom-
position is

U(i)HXi;L+m(0)

�
V(i) 0
0 IL

�
=

2
6664
T
(i)
11 0

... T
(i)
13

T
(i)
21 T

(i)
22

... T
(i)
23

0 0
... T

(i)
33

3
7775 ; (17)

Suppose the signal dimension is d, then T
(i)
11 is d� d lower

triangular. T
(i)
22 is also lower triangular. Since T

(i)
21 ;T

(i)
22 are

in the noise subspace, their elements are much smaller than

those in T
(i)
11 . Speci�cally, they are 0 in the noiseless case.



At iteration i + 1, we have a new set of samples (L
samples which correspond to a new symbol), and we need
to compute the ULV decomposition of Xi+1;L+m(0). Let

x = [xiL � � � xiL+m�1
... xiL+m � � � x(i+1)L+m�1]

= [ x1
... x2

]; (18)

then,�

Xi;L+m(0)

x

�
=

�
U(i)

1

�
2
6666664


T
(i)
11 0

... 
T
(i)
13


T
(i)
21 
T

(i)
22

... 
T
(i)
23

0 0
... 
T

(i)
33

x1V
(i)

... x2

3
7777775

�
V(i)H

IL

�
: (19)

According to ULV decomposition, we perform a series of
left and right Givens rotations to zero the last row,

2
6666664


T
(i)
11 0

... 
T
(i)
13


T
(i)
21 
T

(i)
22

... 
T
(i)
23

0 0
... 
T

(i)
33

x1V
(i)

... x2

3
7777775
=

U
(i)
1

2
6666664

T
(i+1)
11 0

... T
(i+1)
13

T
(i+1)
21 T

(i+1)
22

... T
(i+1)
23

0 0
... T

(i+1)
33

0 0
... x3

3
7777775
V

(i)
1 ; (20)

where T
(i+1)
11 ;T

(i+1)
22 are lower triangular. The dimension of

T
(i+1)
11 is either d+ 1; d, or d� 1, which can be determined

by some reliable condition estimator [3].
Finally the decomposition result at iteration i + 1 is

similar to equation (17) with

U(i+1) =

�
U(i)

1

�
U

(i)
1

V(i+1) =

�
V(i)

IL

�
V

(i)H
1 : (21)

Note that in our recursive channel identi�cation algorithm,
the matrix U(i+1) does not need to be computed.

The above operations involve mainly Givens rotations
and condition estimation. The total computation is in the
order of O(m2).

3.2. Evaluation of H

In each iteration i + 1, let

R1 = [ T
(i+1)
11 0 ]V(i+1)H ;R2 = [ R

(i+1)
1s T

(i+1)
13 ]; (22)

where R
(i+1)
1s is a submatrix consists of the last m � L

columns of R
(i+1)
1 . Our objective now is to estimate H

based on R1 and R2.
Equation (13) implies that there exists a d�d orthonor-

mal matrix P such that

H =
1p
N
RH

1 P: (23)

Let
R = (RH

1 )
+RH

2 ; (24)

where (�)+ denotes pseudoinverse, then from (23), (24),
(13),

R = PJPH ; (25)

which is in the same form as the result in [1] although our
R here may be an orthogonal transformed version of R in
[1]. A transformed version of P is computed by SVD in [1],
which, however, does not satisfy the orthonormal condition
of P.

The exact solution to (25) may not exist. Therefore, it
is an optimization problem to evaluate P. Using the or-
thogonality of P we have the following theorem to evaluate
(25):

Theorem 3 [5]: Let P
4
= [ p1; p2; � � � ; pd ], then

equation (25) gives

pk+1 = Rpk; k = 1; 2; � � � ; d� 1: (26)

p1 satis�es the following equations:

p1p
H
1 = I�RRH (27)

Rdp1 = 0: (28)

Equation (27) shows that the matrix I�RRH consists
of scaled rows and columns of p1. Thus ideally any row or
column of I �RRH is an estimate of p1 up to a constant
multiplier. Considering that I�RRH contains noise (com-
putation error or additive noise), we can choose p1 as the
mean vector of the columns of I�RRH . Simulation results
demonstrate the e�ectiveness of this approach. A detailed
discussion of estimating H can be found in [5].

3.3. Computational Complexity

Because we have to compute d column vectors of H(i), each
with computation of O(m2). So the total computation is
of O(dm2). However, if the channel does not vary too fast,
we can update only one column at each recursion. So after
d recursions, H(i) is updated. Under these simpli�cations,
the total computation is in the order of O(m2).

If our goal is to estimate the equalized symbols only,
then we do not have to �nd the entire matrix H. In fact,
only one row of H+ is needed. According to (23), only
p1 needs to be estimated. Hence, the total computation
is O(m2) in this case. This is not the case for [1] and [2],
where the entire SVD (EVD) still needs to be performed.

4. SIMULATION

In this experiment, we investigate the performance of our
algorithm for a time-varying channel. The channel is a two-
ray multipath channel. The continuous-time channel hc(t)



for t 2 [0; 4T ) is described by hc(t) = a0(t)rc(t � 
0; �) +
a1(t)rc(t� 
1; �) where rc is the raised cosine function [6],
� = 0:35, 
0 = 0:25; 
1 = 1. The discrete-time channel
h(n) is obtained by h(n) = hc(nT=5) for n = 0; 1; � � � ; 19.
a0(t) and a1(t) change with time. For n � 150, we set

a0(t) = e�j2�(0:15), a1(t) = 0:8e�j2�(0:6). For n > 150,

we set a0(t) = e�j2�(0:45); a1(t) = 0:4e�j2�(0:1). Let L =
5; m = 10; 
 = 0:99. The source symbols were drawn from
a 16 QAM signal constellation with a uniform distribution.
SNR= 30dB.

From Figure 1, we see that our algorithm is able to iden-
tify the time-varying channel. The tracking speed depends
on 
. Using a smaller 
 may achieve faster convergence,
but residual NRMSE may be larger.
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Figure 1: NRMSE for time-varying channel. 100 Monte
Carlo runs and 400 symbols in each run.

In Fig. 2 we transmit 1000 symbols at SNR= 30dB and
equalize by the identi�ed channel matrix H at iteration
n = 396 in Fig. 1. Clearly the channel is equalized.
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Figure 2: (a): The unequalized channel output. (b):
Equalized channel output.
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