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ABSTRACT

Maximum-likelihood sequence estimation is often used
to recover digital signals transmitted over �nite mem-
ory convolutive channels when an estimate of the chan-
nel is available. In this letter, we study the impact of
channel estimation errors on the quality of sequence de-
tection. The general case of single input multiple out-
put (SIMO) channels is considered. An asymptotic up-
per bound for the symbol error rate is presented which
allows to treat channel estimation errors as equivalent
losses in signal-to-noise ratio (SNR). This relationship
is studied and numerically validated for the standard
least squares channel estimate and for the semi-blind
estimator which makes use of the empirical subspace of
the observed data.

1. INTRODUCTION

The optimal detection of digital sequences in pres-
ence of intersymbol interference (ISI), caused by narrow-
band pulse shaping and multipath propagation, may
be achieved by the recursive nonlinear maximum likeli-
hood (ML) estimator, called the Viterbi algorithm [1].
The use of a ML procedure is necessary in the envi-
ronments with severe ISI and low SNR, see [2]. The
performance of Viterbi detectors in presence of addi-
tive white Gaussian noise (AWGN) has been studied
by Forney [3]. This and later contributions [4] assume
perfect knowledge of the channel between the emitted
data and the received signal. The present study of the
ML detector with imperfectly known channel has been
motivated by the recent emergence of various channel
estimation techniques. Although di�erent measures of
the channel estimation accuracy have been proposed
(e.g., mean square errors of the channel coe�cients or
linearly reconstructed signals), none of them reect the
impact of estimation errors on ML detection. However,
an analysis of ML detectors in the presence of channel
estimation errors, which enables comparison of di�er-
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ent estimators in the context of data communications,
is highly desirable. In this letter, we show that the
e�ect of estimation errors may be accurately approxi-
mated as a loss in SNR.

2. BACKGROUND

Assume that the overall SIMO channel between the
emitted data and signals observed at system outputs
(e.g., multiple receiving antennas or/and multiple sig-
nal polyphases in the case of fractional sampling) ad-
mits a rather accurate FIR approximation. Let x(t) be
the M -variate complex output noisy series, then

x(t) =
LX
�=0

h(� ) s(t � � ) + n(t); (1)

where s(t) is the emitted sequence, n(t) are the samples
of an AWGN and h(0); : : : ;h(L) is the M � 1 channel
impulse response, M � 1. Let N be the number of sam-
ples, x = [x(N )T ; : : : ; x(2)T ; x(1)T ]T be the MN � 1
vector of observations and s = [s(N ); : : : ; s(1); : : : ; s(1�
L)]T be the (N +L)� 1 vector of input symbols, both
stacked in the reverse sense. According to (1), we have

x = T (h) s + n; (2)

where n is the MN � 1 vector of noise and T (h) is
the convolution matrix associated with the channel i.e.,
T (h) is an MN � (N + L) block-Toeplitz matrix with
M�1 blocks given by h(0); : : : ;h(L). The upper block
row of T (h) is [h(0); : : : ;h(L); 0; : : :; 0] and its �rst col-
umn is [h(0)T ; 0; : : : ; 0]T . Denote by A the data alpha-
bet, i.e., a discrete set of values taken by s(t). We
assume that s(t) is unit variance i.i.d. and, for sim-
plicity, that all the symbols are equiprobable. For the
known channel with AWGN, the ML data estimate is

ŝ = argmin
u
f kx� T (h)uk : u 2 AN+L g: (3)

Suppose that there exists an interval of sizem such that
all the symbols of ŝ are di�erent from the corresponding



symbols of s whereas the preceding/following symbol
is the same for s and ŝ. De�ne ŝm and sm to be the
vectors of symbols corresponding to this interval and

the vector of errors em
4

= ŝm � sm. Forney called such
an occurrence an error event of length m. A sub-event
Em of the error event is that ŝ is \better" than s in the
sense of the ML metric :

Em : kxm � Tm(h) ŝmk � kxm � Tm(h) smk ; (4)

where xm is the sub-vector of x and Tm(h) is the block
of T (h) corresponding to the error interval. The prob-
ability P (Em) of Em allows us to calculate tight bounds
for various error statistics such as the bit error rate and
mean time between the error events, see e.g., [3]. When
the channel is perfectly known, we have,

P (Em) = Q[ k �m k =2� ]; �m = Tm(h) em; (5)

Q[� ] = (�)�1=2
R
1

�
exp(�y2) dy is the error function

and �2 is the AGWN variance. Our goal is to approx-
imate to P (Em) when the channel is estimated.

3. MAIN RESULT

Let h = [h(0)T ; : : : ;h(L)T ]T be the vector of true

channel parameters and ĥT be its estimate obtained
from T data samples. The use of ĥT instead of h yields

ŝ = argmin
u
f kx� T (ĥT )uk : u 2 AN+L g: (6)

The exact evaluation of P (Em) is too di�cult in cases
of practical interest. The following statement gives an
asymptotic approximation for large T and L. Denote
by hAiij the M � M block of A with the upper-left
corner at (M (i� 1) + 1; M (j � 1) + 1) and by nm the
noise sub-vector corresponding to Em.
Proposition 1: Assume that ĥT is asymptotically un-

biased circular Gaussian with the covariance matrixC :p
T (ĥT � h) d!Nc( 0; C ) and that ĥT is statistically

independent from nm. Then, T; L ! 1, L=T < 1,
and the technical assumptions supL ftr ( C ) =khk2g <
1, supL fkemk khk =k�mk g < 1 yield

P (Em) � Q
"
k�mk
2�

�
1 +

L+ 1

T

�m
HCm�m

�2k�mk2
�� 1

2

#
! 0;

hCmiij =
0@ 1

L + 1

X
q�p=i�j

hCipq
1A (7)

for ji� jj � L and hCmiij = 0 for ji� jj > L.
See the Appendix for proof. We briey discuss the
above technical conditions. The �rst one requires that
the channel estimation error variance normalized by the
output power converges in T uniformly w.r.t. L. The

second condition means that the output distance k�mk
is comparable to the input distance kemk enhanced by
the channel. This condition excludes the case of catas-
trophic channels such that, by analogy with the catas-
trophic codes, an in�nitely long error event corresponds
to a �nite Euclidean distance at the output.
Strictly speaking, the statistical independence be-

tween ĥT and nm does not hold for the blind channel
identi�cation methods which make use of the Viterbi
decoder inputs to calculate ĥT . However, the duration
m of an error event is usually small compared to the
data block size T . Hence an estimate ĥT which exploits
the whole data block x is fairly independent of nm.
The circularity assumption is introduced for the sake

of simplicity; it may be relaxed. The consideration of
large T is standard since the distribution of ĥT is rarely
known for �nite T . The most limiting assumption is
that of large L. This assumption is, however, required
to take into account channel estimation errors in their
asymptotic domain. Indeed, for a �xed L, taking T !
1 gives (5), i.e., the standard result with ĥT = h.
The result of Proposition 1 is still di�cult to use

because of the term �m
HCm �m = k �m k2, since this

depends on �m. To get rid of this dependence, one may
take an asymptotic upper bound

P (Em � Q
"
k �m k
2�

�
1 +

L+ 1

T

�m
�2

�
�
1

2

#
(8)

obtained by the relation �m
HCm �m � �m k �m k2, where

�m is the maximum eigenvalue of Cm. Comparing (8)
with (5), we conclude that the e�ect of channel estima-
tion error is similar to a loss in SNR. Indeed, the bound
(8) may be interpreted as the bound (5) corresponding
to the equivalent signal-to-noise ratio

dSNR = SNR

�
1 +

L + 1

T

�m
�2

�
�1

; (9)

where SNR is the true signal-to-noise ratio. This ex-
pression is useful in predicting the sample size T which
ensures that a certain admissible SNR loss is not ex-
ceeded. However a more accurate bound may be re-
quired when the performance of competitive estima-
tors is compared. Note also that an improvement in
the estimation accuracy at the price of computational
complexity or/and sample size makes no sense if the
condition (L + 1)�m =(T �2) � 1 is satis�ed.

4. LEAST SQUARES ESTIMATES

The commonly used channel estimator makes use of
a training sequence, i.e., a speci�c data sequence which
is known at the receiver. Denote by ~s = [s(to + T +
L); : : : ; s(to + 1)] the vector that stacks the training



symbols and by HL(~s) the T � (L + 1) Hankel matrix
having the �rst column [s(to+T+L); : : : ; s(to+L+1)]

T

and the last row [s(to+L+1); : : : ; s(to+1)]. Note that
forM = 1, the T�1 vector ~x of the \trained"outputs is
given, according to (1), by ~x = HL(~s)h+~n, where ~n is
the corresponding noise vector. In the case of M > 1,
this expression generalizes to

~x = HL(~s)h+ ~n; where HL(~s) = HL(~s) 
 IM ;

where (
) is the Kronecker product and IM is the
M �M identity matrix. When T � L + 1, the chan-
nel is perfectly identi�able from noiseless data. In the
presence of AWGN, the minimum variance estimate of
h is given by

ĥT = argmin
f
k~x�HL(~s) fk ) ĥT = HL(~s)

# ~x; (10)

where (#) stands for the Moore-Penrose pseudo-inverse.

It is easy to check that ĥT is circular Gaussian :

p
T (ĥT�h) � Nc( 0; �

2 II�1 ); II =
1

T
HL(~s)

HHL(~s):

Denote by  the maximum eigenvalue of II�1, then
II�1 �  IM(L+1). One may check that the latter in-
equality yields Cm � �2  IMm. Now according to (9),

dSNR = SNR

�
1 +

L + 1

T


�
�1

: (11)

To minimize the variance of ĥT , the matrix II should
approach the identity matrix which implies the use
of uncorrelated training sequences. When T is large
compared to L, we have II � IM(L+1) and therefore
 � 1. Note that using the minimum training size, i.e.,
T = L + 1, leads to the SNR loss of at least 3 dB. In
the GSM norm, the standard choice L = 4 and T = 22
corresponds the loss of about 1 dB.

5. SEMI-BLIND ESTIMATOR

In this section, we study the performance of the
Viterbi detector aided by the semi-blind channel es-
timator recently proposed in [5]. The core idea of this
estimator is to enhance the performance of the trained
estimator by using the principle of blind subspace based
identi�cation [6]. Here we briey recall the main results
presented in [5], [7].
Let x

K
(t) = [x(t)T ; : : : ; x(t � K)T ]T be an M (K +

1)�1 vector stacking (K+1) consecutive data samples

and let R̂K = (N �K)�1
PN

t=K+1 xK(t) xK(t)
H be the

empirical space-time covariance matrix calculated from
N received data samples. De�ne also � the projector
onto the noise subspace of IEfR̂Kg and �̂ the empirical

projector calculated from the estimate R̂K. Due to (2),

the space of the observations x
K
(t) is spanned by the

columns of TK(h) in the absence of noise and therefore
� TK(h) = 0. Based on this property, the blind sub-
space based estimator in [6] yields the quadratic min-

imization ĥN = argminf fk�̂ TK(f)kF : kfk = 1g,
where f = [f (0)T ; : : : ; f (L)T ]T is the channel variable.
The semi-blind estimator in [5] combines the cost func-
tion of this blind estimator with (10) so that

ĥT;N = argmin
f
fk~x�HL(~s) fk2 + N k�̂ TK(f)k2F g;

Let us recall the main properties of ĥN and ĥT;N . The

channel transfer function h(z) =
PL

�=0 h(� ) z
�� may

be factored as h(z) = ho(z) c(z) with the prime M � 1

polynomial ho(z) =
PLo

�=0 ho(� ) z
�� 6= 0 and the scalar

common factor c(z) =
PL�Lo

�=0 c(� ) z�� . The common
factor accounts for a bad diversity of outputs, excessive
choice of L and synchronization errors [7]. As shown

in [6], the blind estimator ĥN collapses when either
of these problems is encountered, i.e., when L > Lo.
Meanwhile the semi-blind estimator ĥT;N remains con-
sistent when L > Lo. This estimator admits a rela-
tively simple closed form solution; it also yields a no-
ticeable improvement of the trained estimator in terms
of the estimation error variance. In practice, the data
block length substantially exceeds the training size :
N � T . According to [5], the asymptotic distribution

of ĥT;N at N !1 and �xed T is :

p
T (ĥT;N � h) d! Nc( 0; C? );

C? = �2B (BH IIB )�1BH ; (12)

where B is the M (L+ 1)� (L�Lo +1) block-Toeplitz
matrix with M � 1 blocks. The �rst column of B
is given given by [ho(0)T ; : : : ;ho(Lo)T ]T and the �rst

block row [ho(0); 0; : : : ; 0]. To compare ĥT and ĥT;N
in terms of decoding performance, we approximate the
bound (9) corresponding to the estimation error vari-
ance C? speci�ed in (12). First, the bound II�1 �
 IM(L+1) yields C? � �2B(BHB)�1BH . Note that

B(BHB)�1B is the projector onto the spanf B g. Con-
sequently, tr( B(BHB)�1BH ) = L� Lo + 1.

To derive the bound (9), we will assume that Cm

is approximately block-diagonal. Such an assumption
makes sense when (Lo + 1) modes ho(� ) are spatially
decorrelated. Strictly speaking, Cm is asymptotically
block diagonal when Lo ! 1 and a stochastic chan-
nel model is such that di�erent ho(� ) are statistically
independent. Under this assumption, �m may be cal-
culated as the maximum eigenvalue of the M �M di-
agonal blocks of Cm. Taking account (7), we obtain :
�m � (L+ 1)�1 tr ( C? ) � �2  (L�Lo +1) = (L+ 1).



Plugging the upper bound of �m into (9), �nd :

dSNR = SNR

�
1 +

L� Lo + 1

T


�
�1

: (13)

Comparing (13) to (11), we observe that ĥT;N is sta-

tistically equivalent to ĥT with the model order L re-
duced to the di�erence between L and the order Lo of
the channel factor ho(z) which exhibits a diversity of

outputs. The performance gain of ĥT;N over ĥT also
depends on the accuracy of the channel modeling. In-
deed, choosing L� Lo would result in (L�Lo)=L � 1
and hence comparable performances of (11) and (13).

6. NUMERICAL STUDY

We simulate a communication system with M = 4
receiving antennas. Each emitted burst consists of 200
QAM-4 data symbols and (T + L) training symbols.
The signal is transmitted over a multipath channel with
the delay spread of approximately 2 symbol periods,
shaped at the emitter and receiver by the half raised
cosine �lter with rollo� 0:5 and sampled at the symbol
rate. A 5-tap channel estimate (L = 4) is calculated
according to (10) and used for the ML detection pro-
cedure (6). In Fig.1, the symbol error rate, obtained
from 10000 Monte-Carlo trials, is plotted against the
SNR for di�erent training sequences. The values plot-
ted by (�2�) are obtained with the true channel while
(� � �), (�5�) and (� ?�) correspond to estimates
obtained with T = 8, T = 12 and T = 22 respectively.
Note that T = 22 is the case of the GSM norm. The
expected losses in SNR, calculated for the given T and
the corresponding  according to (11), are given by :

T 8 12 22

SNR= dSNR, dB 2.6324 2.1085 1.1185

The lowest solid line connects the points obtained for
the true channel whereas the other three solid lines are
obtained by shifting the �rst one to the right by the

values of SNR losses (SNR= dSNR )8, (SNR= dSNR )12
and (SNR= dSNR )22. We naturally expect that these
three curves predict the symbol rates for T = 8, T = 12
and T = 22 respectively. A good agreement of these
theoretical curves with the estimated error rates may
be observed for the probabilities of error less than 10�2.
In Fig.2, we compare ĥT and ĥT;N at L = 3; 4. The

simulation environment is as in the previous example,
T = 8 and N = 200. Similarly to the previous �gure,
the lower pair of curves (�2�), (�) corresponds to the
true channel. The other four solid lines stand for the
theoretical performance obtained by shifting the lowest
solid line right-wise by the corresponding values of SNR
losses calculated via (11) and (13) for ĥT and ĥT;N res-
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Fig.1. Symbol error rate : ĥT , di�erent T .
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Fig.2. Symbol error rate : ĥT and ĥT;N , di�erent L.

pectively. Note that in all cases, the performance gain
of ĥT;N against ĥT;N approaches 1 dB.
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