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ABSTRACT

We describe the integration of across-word models in the RWTH
large vocabulary continuous speech recognition system, where our
main focus is on the realization of the acoustic recognition pro-
cess. This paper presents a study of two search methods based
on the priniciple of dynamic programming. For both methods we
discuss the implementation details and give experimental results
on theVerbmobiland on theWall Street Journaldata. In addition,
we introduce a score interpolation of within-word and across-word
models for both search methods. In combination with across-word
models this interpolation technique gives an improvement of the
recognition accuracy by14% relative to our standard system.

1. INTRODUCTION

This paper describes the integration of across-word modelling into
the RWTH large vocabulary continuous speech recognition system
[5]. In particular, we consider two search methods, namely the
n-bestandone-passapproach, for handling across-word models.
Both methods are based on the word-conditioned search method
using a tree-organized pronunciation lexicon. For the n-best method
[6] several computation and optimization steps are required to ob-
tain high recognition performance. In principle, a word graph
is produced during the acoustic recognition process using within
word models. We then extract then best sentence hypotheses
from the word graph and rescore only these hypotheses in a sub-
sequent step with the across-word models. When using the one-
pass algorithm combined with word-conditioned copies of the lex-
ical prefix tree and across-word models, an efficient implementa-
tion is needed, since the recombination across word boundaries
and the generation of a memory-optimized pronunciation tree is
more complicated than in the case of handling within-word mod-
els [1, 7, 10]. To do this in an efficient way, we present some
implementation details of this integrated search technique.

In addition, we introduce a simple method to interpolate the
scores of the within-word and across-word models in a linear way.
This linear interpolation scheme is especially useful for then-best
search where both models are already in use for the two acoustic
recognition passes. For the one pass search, the interpolation also
has proven its usefulness in achieving higher recognition accuracy.

The rest of the paper is organized as follows: In Section 2,
we discuss the impact of across-word modelling on our training
algorithm. Section 3 describes then-best and the one-pass search
method using across-word models. Furthermore, we present the
interpolation scheme mentioned above. In the Section 4, we give
experimental results on the Verbmobil and on the Wall Street Jour-
nal corpus, and finally in Section 5 we draw some conclusions.

2. TRAINING ASPECTS

For the integration of across-word models into the training pro-
cedure, the acoustic training is modified so that for every word
transition, the between-word pause is estimated. According to this
estimation, the correct across-word models are used at the word
boundaries for the HMM of the sentence.

The pause length is estimated in every iteration of the training
process. This information is saved in a file during one iteration
and is then used in the next iteration to determine the models at
the word boundaries according to the so-called silence threshold
� . Due to this approach, no information about the between-word
pause length is available at the start of the training process on a
new corpus. An examination of the duration distribution of the
between word silences in the training corpora showed that about
80% of the word pairs have no pause at all between them. This
means that 4 out of 5 transitions between words are modelled by
across-word triphones, independent of the threshold for the length
of the pause. Therefore, for a new corpus, we simply set all pause
lengths to zero, taking into account the observation that the most
part of the word transitions are without any pause between them.
As a consequence, the training for a new corpus has to be done in
two steps:

1. A phonetic decision tree for across-word models is calcu-
lated where all between-word silences are set to zero. Using
this decision tree, a training is performed.

2. Using the information of the length of the between-word
pause, a second phonetic decision tree is calculated and
a training using this new decision tree is performed. The
acoustic model estimated by this training is used for recog-
nition.

The improvement of the word error rate is about 5% relative
when compared to the results of recognition using the acoustic
models of the first and the second iteration.

Apart from the iterative estimation of the between-word pause,
no substantial modifications were made to the training procedure
described in [5]. We use only one silence model with a single state,
and position independent triphones [2].

3. SEARCH METHODS

In this section we present two methods for the integration of across-
word models into the recognition process. In particular, we con-
sider in the following a multiple-pass and a one-pass search strat-
egy to handle across-word models in an efficient way. These two
techniques are then-best method and the integrated search method.



3.1. N-best Search

Then-best search method based on the word graph method as de-
scribed in [8]. From a word graph it is relatively easy to derive
n-best lists [9]. Therefore, our approach works basically in three
steps:

� Generation of a word graph using the standard search algo-
rithm and word internal triphones

� Generation of then best sentences according to this word
graph

� Rescoring of these sentences using both word internal and
across-word triphones

The generation of the word graph uses the so-called word-pair
approximation as described in [3]. For this it is assumed that the
start time of a wordw depends only on its direct predecessor word
v. For short wordsv this approximation leads to a deterioration of
the word error rate as demonstrated in [8]. However, for ann-best
list this effect is not relevant because the approximation causes
only small changes in the word scores. Therefore, then-best list
should be affected only for very smalln (n < 10).

The generation of then-best list on this word graph is based
on the algorithm which normally extracts the best sentence out of
the word graph. This algorithm works in the following way. For
a given node in the word graph, it optimizes over the scores of all
nodes which have an arc leading into the actual node, plus the local
score at this node and the language model score. This optimiza-
tion is done for all nodes of the word graph in a time-synchronous
fashion. At the last node of the word graph, i. e. the ending time of
the spoken sentence, the best sentence hypothesis can be extracted
by using the traceback fields which also were generated during the
search through the graph [8].

This method can simply be extended to extract then best sen-
tences from the word graph. Instead of storing only the best hy-
pothesis in every node, then best hypotheses are stored. The opti-
mization is then performed over allmn hypotheses of them pre-
decessor words. By using this method it can be made sure that at
the last node of the word graph then best hypotheses can be found.
A substantial speed-up of this method can be achieved by caching
the scores of the language model because the word sequences of
the sentences hypotheses considered in this process are very simi-
lar. Recently, we have implemented a new algorithm for the gen-
eration of a time-conditioned word graph without any approxima-
tions. This algorithm gives us ann-best list as a side effect, so we
do not need any distinct method for then-best list generation any
more [4].

Thisn-best list is then rescored using both word-internal and
across-word triphones. Therefore, the length of the pause between
the word has to be measured. This is done either in the first or the
second pass of the search process (see Section 4). The rescoring
process can also be sped up by using a cache that stores the acous-
tic scores for each mixture distributions and each time framet.
Because the sentence hypotheses are very similar, most pairs(s; t)
did not change when rescoring a new sentence and can therefore
be re-used.

3.2. Integrated Search

The integrated search method is based on the tree-organized pro-
nunciation lexicon using word-conditioned copies of the lexical
tree, where the recognition process is only performed in one search

pass. Therefore, we have to incorporate the across-word models
into the lexical prefix tree. In principle, the lexical tree has to
fan out at phoneme arcs corresponding to word ends. For every
phoneme following the actual word, a new arc is added to this
fan-out so that every arc of the fan-out represents a hypothesized
coarticulation with the starting phoneme of the possible following
words. For these words, only those arcs of the first phoneme gener-
ation of the lexical tree are activated representing the correspond-
ing phoneme arc of the fan-out. In addition, a silence arc is added
to the tree root to allow no coarticulation at word boundaries. To
do this in a memory-efficient way, we build in a pre-processing
step a generic tree including the fan-out arcs for each word end. In
addition, a separate copy of the first phoneme generation will be
stored for each possible word start-up phoneme. During the recog-
nition process, this part of lexical tree will be linked to the generic
tree, of course, with respect to the across-word context.

To make the application of the dynamic programming (DP) ap-
proach possible, we structure the search as follows. Considering a
bigram language model, we introduce for each hypothesized word
endw and the final fan-out arc��
 of w a separate copy of the
lexical tree denoted by(w; �
 ). For incorporating the across-word
triphones within a new tree start-up hypotheses, only the center
phoneme� and the right phoneme context
 is required. Fig. 1
illustrates this concept for word end hypotheses ofB with differ-
ent predecessor words(A;B;C) in a simplified schematic form.
Instead of showing the whole lexicon tree, Fig. 1 depicts only the
last phoneme generation or strictly speaking the fan-out arcs of
the word end hypothesesB and the first phoneme generation of
the new tree hypotheses ofB depending on the across-word con-
text. The bigram probabilityp(wjv) is incorporated into the partial
overall score when the final state of wordw with predecessor word
v has been reached. The symbol� denotes tree internal nodes and
the symbol� illustrates word end nodes of a tree copy. We then
collect for each word end hypothesis the best predecessor wordv
with respect to the fan-out arc��
 so that each tree copy depends
on the pair(v; �
 ). The corresponding overall score is then propa-
gated into the root of the associated lexical tree, being represented
by the symbol2 in Fig. 1. The shadowed area in Fig. 1 marks the
potential tree start-up hypotheses ofB. For each new tree copy
only the arcs of the first phoneme generation of the lexical tree are
activated which are associated to the corresponding fan-out arc of
B. When using this concept, we can formulate the recursions for
the DP approach by introducing the following quantities:

Q(v;�
)(t; s) := overall score of the best partial path that
at timet ends in states of the lexical tree for predecessorv
with fan-out arc��
 .

B(v;�
)(t; s) := starting time of the best partial path that
at timet ends in states of the lexical tree for predecessorv
with fan-out arc��
 .

Note that the left phoneme context� of the fan-out arc��
 stands
for the immediate predecessor phoneme independent of the across-
word context. Within a tree we can apply the usual DP recursion
for the time alignment:

Q(v;�
)(t; s) = max
�

�
q(xt; sj�) �Q(v;�
)(t� 1; �)

	

B(v;�
)(t; s) = B(v;�
)(t� 1; �maxv (t; s)) ;

where�maxv (t; s) denotes the optimum predecessor state for the
hypothesis(t; s) and predecessor pair(v; �
). The termq(xt; sj�)
is the product of transition and emission probabilities when going
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Figure 1: Word boundary recombination using a bigram language
model combined with a lexical tree and across-word triphones.

from state� to states and observing vectorxt. To perform the
recombination at word level, we have to select the predecessor pair
(v; ~�
) for each word end hypothesis(w; �
). For this, we define
the DP equation:

H(w; �
 ; t) := max
(v; ~�
)

n
p(wjv) �Q(v; ~�
)

(t; S(w;�
))
o

;

where stateS(w;�
 ) denotes the final state of wordw in the fan-out
arc��
 . Finally, we have to initialize the new tree-start hypothesis
by passing on the score and the time index before processing the
new hypotheses for timet:

Q(w;�
 )(t; s = 0) = H(w;�
 ; t)

B(w;�
 )(t; s = 0) = t :

3.3. Interpolation

An observation we made during our experiments for then-best
method was the increase of the error rate forn > 20. This effect
was found in all experiments we made for theWall Street Jour-
nal corpus, and was called the “parasite effect” (see Table 2). By
analysing the results more deeply, we observed an increase of in-
sertions and substitutions when increasing the length of then-best
list. This phenomenon can be explained by the fact that by using
across-word models, the modelling of the word boundaries is en-
hanced while the modelling of the word interior stays the same or,
if a triphone occurs both in the word interior and the boundary, is

Table 1: Word error rate for different silence thresholds� on WSJ
Nov. 92 using then-best method,n = 20.

silence threshold� WER[%]

baseline 7.1
1 6.4
2 6.6
5 6.7
1 7.0

Table 2: Word error rate for differentn and different estimations of
the between-word pause length on WSJ Nov. 92 using then-best
method.

n best WER[%]
sentences first pass second pass

5 6.4 6.3
10 6.4 6.3
20 6.4 6.3
50 6.5 6.4
100 6.5 6.4

deteriorated. For smalln-best lists, this effect is partly masked be-
cause the decision for the best sentence is made both using within-
word and across-word models. For longern-best lists, the decision
relies only on the across-word models. This means that by using
relatively shortn-best lists, a kind of implicit interpolation takes
place. Therefore, we tried to explicitly interpolate the sentence end
scores achieved by both models using the formula

Cint = � � CCW + (1 � �) � CWW ;

where� is the interpolation factor between 0 and 1, andCCW
andCWW are the sentence end scores for across-word and within-
word models. For the corpora we have used for our recognition
experiments, we found that a factor of� = 0:7 was optimal.

For the one-pass algorithm, the interpolation of the sentence
end scores is not possible. Here, we interpolated the score at the
state level. Therefore, we labelled every HMM of the lexial tree
with two mixture indices, one for the within-word and one for the
across-word models. During the search, two scores were calcu-
lated for each HMM state and then interpolated using the formula
given above.

4. RECOGNITION EXPERIMENTS

In a first series of experiments, we analyzed the effect of the silence
threshold� on the Wall Street Journal corpus (WSJ Nov.’92 devel-
opment and evaluation test data) using then-best method. For this,
we performed several training and recognition passes with silence
thresholds from1 up to1, and compared them to the baseline
result without across-word modelling which corresponds to a si-
lence threshold of0. Table 1 shows that the optimal value for this
parameter on the WSJ corpus is1. For higher values a clear dete-
rioration of the error rate can be observed, even for a value of2 the
error rate goes up from 6.4% to 6.6%.

In this experiment, the silence length between the words is es-
timated in the first recognition pass which uses only word-internal
triphones. Because this length decides whether a word transition



Table 3: Word error rate for differentn using then-best method
combined with and without linear score interpolation on WSJ Nov.
92 and Verbmobil 96.

n best WER[%]
sentences WSJ Verbmobil

no int int no int int

5 6.3 6.2 21.1 21.1
10 6.3 6.2 20.8 20.7
20 6.3 6.1 20.6 20.5
50 6.4 6.1 20.6 20.2
100 6.4 6.1 20.5 20.0

Table 4: Word error rate for the integrated search method on Verb-
mobil 96.

method WER[%]

baseline 21.9
no interpolation 21.4

interpolation 20.2

with or without coarticulation is used in the rescoring, one can ar-
gue that better estimations can be achieved if the decision about
the handling of the word transition is made in the second pass
where across word models can be used. Therefore, we modified
the recognition algorithm to estimale the pause length during the
second pass of the search. The results for this experiment are
shown in Table 2. The influence of this modification on the er-
ror rate is marginal, only 0.1% gain can be achieved by the mod-
ified word transition handling. Nevertheless, because this method
should be more accurate than the baseline method, we kept it for
the rest of our tests to prevent any masking of certain effects by the
baseline word transition handling. The results for the interpolation
of the scores are shown in Table 3. For both corpora, the error rate
was improved by about 3% relative, and, as a second improvement,
the parasite effect was not observed any more. Even for highern,
where experiments were run only for the WSJ corpus, the error
rate stayed around6:1%. All in all, the proposed method gives a
reduction of14% relatively to the baseline result (see Table 1).

Finally, we tested the integrated search method on the Verb-
mobil 96 corpus. The recognition results are shown in Table 4.
In an initial experiment, we obtained a word error rate of21:9%
by using only word-internal triphones. When using across-word
models, a word error rate of21:4 and20:2 can be achieved with-
out and with score interpolation respectively. These results sug-
gest that the introduced linear interpolation scheme is important
in order to achieve the maximal performance improvement by ap-
plying position-independent triphone models. The results of the
integrated method will now be compared with the results of the
n-best method. It seems that then-best method leads to a slightly
better recognition accuracy. However, we found that in most of the
sentences the integrated search methods results in better sentence
score than then-best method.

5. SUMMARY

In this paper we have presented two efficient search methods for
handling across-word models. Furthermore, we have introduced a

linear interpolation scheme for combining the scores of the within-
word and the across-word models. When using this linear interpo-
lation in the context of position-independent triphone models the
recognition accuracy can be improved by10� 14%.
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