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ABSTRACT

We develop new rules for combining estimates obtained
from each classi�er in an ensemble. A variety of combi-
nation techniques have been previously suggested, includ-
ing averaging probability estimates, as well as hard voting
schemes. We introduce a critic associated with each clas-
si�er, whose objective is to predict the classi�er's errors.
Since the critic only tackles a two-class problem, its predic-
tions are generally more reliable than those of the classi�er,
and thus can be used as the basis for our suggested im-
proved combination rules. While previous techniques are
only e�ective when the individual classi�er error rate is
p < 0:5, the new approach is successful, as proved under
an independence assumption, even when this condition is

violated { in particular, so long as p + q < 1, with q the
critic's error rate. More generally, critic-driven combining
achieves consistent, substantial performance improvement
over alternative methods, on a number of benchmark data
sets.

1. INTRODUCTION

In recent years, ensemble classi�cation has emerged as one
of the most promising and one of the most actively inves-
tigated classi�cation paradigms, e.g. [4]. In this approach,
probabilistic class estimates or decisions from each classi�er
in a collection are pooled, using some rule of combination, in
order to make the ultimate decision for a new datum. Typ-
ically, individual estimates are combined through soft aver-
aging, or hard voting. This paradigm has been motivated as
an alternative to the more conventional \stand-alone" clas-
si�cation system by arguing that individual classi�ers are
often suboptimal and that combining estimates obtained
from multiple classi�ers can improve upon the stand-alone
performance of any classi�er in the collection [4]. The e�ec-
tiveness of combining can be given some simple analytical
justi�cation for majority-based voting, assuming that the
classi�ers all make errors or correct decisions independent
of each other. Under this assumption the number of cor-
rect voters is given by the binomial distribution. If the in-
dividual classi�er error rate is p < 0:5, it is a known result
(Condorcet's theorem) [1] that for odd (or even) number
of classi�ers (voters) N , the correct decision rate for the
voting system increases with increasing N , going to one
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as N ! 11. Alternatively, if p > 0:5, the correct decision
rate decreaseswith increasing N . Since the Bayes error rate
(typically positive) represents the actual ultimate classi�ca-
tion performance, one must conclude that the independence
assumption, which predicts a lower bound of zero, cannot
hold as N ! 1. Moreover, it is di�cult in practice to de-
sign classi�ers that even approximately achieve independent
errors, even for small N . Still, this simple analysis does pro-
vide some qualitative characterization of what can be hoped
for in practice, i.e., that performance should improve with
increasing N . It also identi�es important system proper-
ties (approximate classi�er independence, p < 0:5) typically
required for the success of majority-based voting schemes
and believed required for ensemble classi�cation methods in
general[4]. The restriction p < 0:5 serves as particular moti-
vation for the present work as, in the sequel, we will suggest
new combination paradigms which actually allow removal

of this requirement. We will thus signi�cantly extend the
applicability of ensemble classi�cation techniques.

We can categorize classi�er combination methods in
terms of the training scenarios under which they can be
applied. In the most ideal situation, there is a common
training set available for the design of the entire ensemble
system. In this case, there are two basic training strategies:
i) separate design of the individual classi�ers, followed by
joint optimization of the structure which combines their
decisions (which we will refer to as the combiner) based on
either the training set e.g. [8] or a validation set; ii) joint
optimization of the entire system.

While the above are strategies of choice given a com-
mon training set, there are situations where such training
is either impossible or impractical. As one instance, con-
sider the case where the combiner pools the decisions of
proprietary classi�ers produced by individual companies.
To the designer of the combiner, each individual classi�er is
an immutable \black box", trained on the company's (in-
accessible) data set in some unknown way. In this case, the
classi�ers are pre-trained and there is no common training
set for optimizing the combiner. Thus, joint optimization
is not possible.

The above circumstance necessitates schemes that com-
bine the decisions of pre-trained classi�ers. In this case, a
common training set is not required; nor, in fact, is training
of the combiner required. Here, we restrict consideration to
such schemes and seek to develop new, improved combina-

1This result is attributed to the Marquis de Condorcet (18th
century) [1], who addressed the problem in a jury context.



tion rules. The di�erence between our approach and previ-
ous work on simple averaging and voting schemes is our use
of a critic, speci�c to each classi�er (expert), which evalu-
ates expert opinions. Given the same input feature vector
used by the expert, the critic tries to predict whether the
expert's decisions are valid or bogus. The critic is trained af-
ter its expert, on the expert's training set, with supervision
information indicating whether or not the expert's decisions
agree with the true class labels { essentially, the critic is an
expert on the expert. Since the expert is assumed to tackle
a multiclass (> 2 class) problem and the critic only needs to
solve a two-class problem, the critic's estimates should be
more accurate than the expert's on average. The suggestion
is then to incorporate the critic's opinion within the rule of
combination, so as to achieve more reliable decisions. We
next introduce several approaches.

2. CRITIC-DRIVEN COMBINATIONS

We propose both hard voting and soft averaging schemes.
Consider classi�cation of a feature vector x 2 Rd into one
of C classes. Assume there are N experts.

2.1. Critic-driven Voting

We propose several critic-based extensions of standard vot-
ing methods: 1. Each expert votes for the class which it
predicts if the critic assesses that the expert prediction is
valid. Otherwise, the expert abstains from voting. The
total number of votes (K) equals N minus the number of
abstentions. All votes are given equal weight. If any class
receives l > K

2 votes, then that class is the one predicted
by the ensemble. Otherwise the datum is rejected. 2. An
alternative rule is motivated by the following fact: the prob-
ability of correct decision for majority-based voting with N
voters, N even, is less than the probability of correct deci-
sion with N � 1 voters. This suggests a modi�cation of the
critic-based scheme just described wherein, when K is even,
one voter is dropped prior to vote tallying. In practice, the
voter with least con�dence from its critic could be dropped.
This modi�ed scheme has two advantages over the former
one. First, as one might expect, it achieves a greater correct
decision rate. Second, it greatly simpli�es the performance
analysis of section 3. We also suggest a critic-driven version
of plurality voting.

2.2. Critic-driven Averaging of Probabilities

In this case, each expert produces estimates of the a pos-

teriori class probabilities, i.e. P
(j)
e [kjx], k = 1; : : : ; C j =

1; : : : ; N , with \e" denoting expert. Each critic also pro-

duces probabilities P
(j)
c [bjx], where b 2 f0; 1g, with \1"

indicating a valid assessment and \0" a bogus assessment.
Here \c" denotes the critic. A loosely stated objective for
the combiner is to \agree with" expert probabilities, to the
extent that they are valid, as estimated by the critic. In-
formation theory suggests in this case use of a cross en-
tropy (Kullback-Leibler distance) criterion { a measure of
dissimilarity between probability mass functions that has
been given axiomatic justi�cation [7]. However, since cross

entropy is an asymmetric cost, there are two possible ob-
jectives.
The Geometric Average Rule: If we view the expert prob-
abilities as priors, then we will choose the combined prob-
abilities fP [kjx]g as the posteriors minimizing the average
cross entropy cost:

NX
j=1

wj(x)D(fP [kjx]gjjfP (j)
e [kjx]g): (1)

Here, D(fP [kjx]gjjfP
(j)
e [kjx]g) �

CP
k=1

P [kjx] log
�

P [kjx]

P
(j)
e [kjx]

�
,

the standard cross entropy cost between pmfs, with the

weighting function wj(x) =
P
(j)
c [1jx]

NP
l=1

P
(l)
c [1jx]

, a probabilistic mea-

sure of the critic's con�dence in its expert2. After minimiz-
ing (1) over fP [kjx]g subject to constraints ensuring a pmf
solution, we obtain the \geometric average" estimates:

P [kjx] =

NQ
j=1

(P (j)
e [kjx])wj(x)

CP
m=1

NQ
j=1

(P
(j)
e [mjx])wj(x)

k = 1; : : : ; C: (2)

The chosen class is then the one with maximum a posteriori

probability.
The Arithmetic Average Rule: Alternatively, we can inter-
pret the experts as posterior probabilities and seek a prior

probability agreeing with each posterior, to the extent that
it is valid. In this case, we obtain the \arithmetic average"
rule:

P [kjx] =

NX
j=1

wj(x)P
(j)
e [kjx]: (3)

Equation (3) is a generalization of simple averaging [2], and
specializes to it with the choice wj(x) = 1

N
. Both (2) and

(3) are e�ective schemes, with neither dominating the other
in all cases. In particular, we have found that while (2) of-
ten achieves better results than (3), it may produce less
reliable results when some experts give probabilities close
to zero.
An Improved Rule: While both (2) and (3) outperform sim-
ple averaging, neither approach gleans all the information
contained in the ensemble. In particular, if we consider the

case where P
(j)
c [1jx] = 0, we see that in both (2) and (3),

expert j e�ectively abstains from contributing its estimates.
However, a zero probability from a critic is actually quite
informative { it reasonably indicates that the expert's pre-
dicted (\winning") class should be excluded. This suggests
the following approach: conditioned on critic j's valida-

tion of its expert, the pmf ~P
(j)
e [kjx; bj = 1] = P

(j)
e [kjx] is

posited; conditioned on the critic's rejection, a uniform pmf
is posited over all classes excluding the expert's predicted
winner:

~P (j)
e [kjx; bj = 0] =

�
1

C�1 if k 6= c�

0 k = c�;
(4)

2Other choices for the weights wj(x) that are monotonically

increasing in P (j)
c [1jx] have also been found to be e�ective.



where c� = argmax
c

P
(j)
e [cjx]. Now, the average cross en-

tropy cost sums over 2N terms and the resulting estimator,
assuming experts as posteriors, is:

P [kjx] =

NX
j=1

1X
l=0

wjl(x) ~P
(j)
e [kjx; l]: (5)

3. ANALYSIS OF VOTING METHODS

Assume experts make independent errors, with common
rate p. Then, for standard majority-based voting, the prob-
ability of l correct votes from a total of N experts is given
by a binomial distribution. The correct decision rate for
the majority-based scheme is then

Pcm(N) =

NX
l>N

2

�
N

l

�
(1� p)lpN�l

: (6)

By Condorcet's theorem, if p < 0:5, Pcm increases with
odd(even) N3. Likewise, if p > 0:5, Pcm decreases with
increasing odd(even) N [1]. Now, consider critic-driven ma-
jority voting, wherein a voter is dropped, if required, to
achieve an odd-sized voting ensemble. Assume critics make
errors at common rate q, independent of their experts and
independent of other experts and critics. For convenience,
assume q is the rate both for false \valid" and false \bo-
gus" critic decisions. The probability of M voters (N �M

abstentions) is binomial, i.e.

PN [M ] =

�
N

M

�
(pq+(1�p)(1�q))M ((1�p)q+p(1�q))N�M

:

(7)
Further, the distribution over the number of correct voters
is also binomial. Thus, the probability of correct decision
given a critic-driven voting ensemble of size M is

P [correctjM ] =

MX
l>M

2

�
M

l

�
(1� ~p)l ~pM�l

; (8)

with ~p = pq

pq+(1�p)(1�q) . Averaging over all ensemble sizes,

we get the overall critic-based correct decision rate:

Pcc(N) =

NX
M=1

PN(M)P [correctjodd(M)]: (9)

Here, odd(M) returnsM ifM is odd; else, it returnsM�1.
Similar to Pcm, Pcc increases with N for p < 0:5, assum-
ing q < p. However, unlike Pcm, if q is su�ciently small,
then even if p > 0:5, Pcc still increases with increasing N

(where N now ranges over all positive integers). Essentially,
the critics force abstentions so as to reduce the individual
voter's error rate below 0.5, even when the expert rate p is
above 0.5. In particular, we have the following result which
shows that critics extend achievable voting performance:

3For N even, Pcm(N � 2) < Pcm(N) < Pcm(N � 1). Thus,
while Pcm ! 1 as N ! 1, the performance curve is jagged,
dipping on odd-to-even transitions.

Theorem: The critic-driven correct decision rate increases
with increasing integer N if p+ q < 1.
Proof : See [5].

In summary, we get a much less stringent condition for
successful voting in the critic-driven case than in the stan-
dard majority-based case, under an independence assump-
tion (as will be further con�rmed experimentally).

4. EXPERIMENTAL RESULTS

We have evaluated the various combination schemes using
radial basis functions (RBFs) [6] and decision trees [3] as
the basic classi�er structures. These structures were used to
form both the experts and the critics. For a particular train-
ing/test split, we generated performance curves for several
methods to demonstrate how the conventional approaches
and the critic-driven ones fare for particular choices of p
and, in the critic-based case, q.

In Figure 1, we compare simple averaging and the critic-
driven \arithmetic averaging" for RBF-based classi�cation
of glass. The 214 sample data set was equally split into
training and test sets. For simple averaging, we designed
experts with 16 RBF components. For the critic-based
scheme, we designed (expert,critic) pairs with (16,20) RBF
components. The critic networks are actually less complex
than the experts, since they only have two outputs, one
per class. For this experiment, we observed p ' 0:51 and
q ' 0:47. Thus, p > 0:5 and p + q < 1. Here, the analyti-
cal results of section 3.1 (extrapolated to the soft averaging
case) are essentially validated. The trend for critic-based
performance is a decrease in the error rate for increasing N ,
while there is no improvement (and some degradation) with
increasing N for standard probability averaging. Moreover,
the bene�t of critic-based combining over averaging is sub-
stantial.

As a second example, we consider hard plurality voting
on Deterding's vowel set. The 990 samples in this set were
split into 525 training and 465 test. In this case, we used
decision tree classi�ers with both experts and critics con-
sisting of 47 nodes. For this di�cult example we observe
p = 0:66 and q = 0:46, i.e. p > 0:5 and p + q > 1. There-
fore, based on the analysis of section 3, we expect that the
performance of both methods will degrade with increasing
N . However, we see in Figure 2 that the standard voting
error rate4 stays roughly constant (even increasing a lit-
tle) with increasing N , while the critic-driven rate decreases
signi�cantly. Moreover, critic-driven combining achieves a
substantial performance advantage for increasing N . These
results, which (in this case) prove the independent analysis
pessimistic, can be explained from the standpoint of expert
dependence. For the critic-based scheme, we can argue that
even though p+ q > 1, there must be regions of signi�cant
probability mass in the feature space where p+ q < 1, and
where the experts are roughly independent (thus allowing
correct decision rate improvement for increasing N). Fur-
ther, it may be the case that where p+ q > 1, the experts
are dependent { thus, the correct decision rate will not nec-
essarily decrease for increasing N , even in regions where

4For hard majority and plurality voting, errors include rejec-
tions in our experiments.



p + q > 1. A corresponding argument can be applied to
explain the standard voting performance.

We also give a third example of p > 0:5 for majority
voting on the yeast data set, in Figure 3. The training/test
split for this set was 742/742. We designed the CART clas-
si�ers and critics with 31 and 47 nodes, respectively. Here
p = 0:53 and q = 0:41. Again the critic-driven trend is a
decreasing error rate. Also, the performance is signi�cantly
better than the standard majority curve.

5. CONCLUSION

In this work we advanced the paradigm of critic-driven en-
semble classi�cation. Under an independence assumption,
it was proved (in [5]) that critic-driven performance im-
proves with increasing number of experts so long as p+q <

1, with p and q the expert and critic error rates. Moreover,
the potential performance bene�ts relative to simple voting
and averaging techniques were demonstrated on benchmark
sets from the UC Irvine repository.

A coming paper [5] extends the work in this paper in
several directions. First, we present more comprehensive
experimental results which validate the critic-driven paradigm.
Second, we develop novel combination rule for the case
where critics are \weak", i.e., where critics do not condi-
tion on input features. Finally, while the analysis based
on independence does provide insight, the inaccurancy of
the independence assumption motivated us to develop an
alternative analysis technique for predicting ensemble per-
formance which incorporates prior knowledge on classi�er
dependence. This technique is based on maximum entropy
statistical inference. The resulting predictions are more ac-
curate than those assuming independence [5].
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Figure 1: Error rates of RBF-based critic-driven arithmetic
averaging and simple averaging for a single split of the glass
data set.
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Figure 2: Error-plus-rejection rates of CART-based critic-
driven plurality voting and standard plurality voting for a
single split of the vowel data set.
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Figure 3: Error-plus-rejection rates of CART-based critic-
driven majority voting and standard majority voting for a
single split of the yeast data set.


