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ABSTRACT

An algorithm for synthesizing color textures from a small
set of parameters is presented in this paper. The synthe-
sis algorithm is based on the 2-D moving average model,
and realistic textures resembling many real textures can be
synthesized using this algorithm. A maximum likelihood
estimation algorithm to estimate parameters from a sample
texture is also presented. Using the estimated parameters,
a texture larger than the original image can be synthesized
from a small texture sample. In the experiment, various tex-
tures suitable for multimedia applications are synthesized
from parameters estimated from real textures.

1. INTRODUCTION

Color textures play important roles in multimedia appli-
cations. Textures provide rich array of background, di-
verse surface of objects, visual discrimination for di�erent
regions, etc. We suggest an approach for synthesizing color
textures from a small number of parameters. This approach
can synthesize both stochastic textures and structural tex-
tures. The stochastic textures, such as cloud, grass, sand,
etc, contain no structural patterns, and the structural tex-
tures, such as brick wall, herringbone weave, etc, contain
strong structural patterns. The estimation of model param-
eters are done by the maximum-likelihood (ML) method.
Using this modeling approach, parameters are estimated
from the real textures, and they can be stored e�ciently.
Diverse images resembling real textures can be e�ciently
synthesized from the estimated parameter values. The ap-
proach of synthesizing color textures from a sample texture
is illustrated by the block diagram in Figure 1.
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Figure 1: Color texture analysis and synthesis algorithm.

The synthesis approach is based on the two-dimensional
(2-D) moving average (MA) model. Under this model, a
monochrome image is assumed to be generated by a circu-
lar convolution of a point spread function with input excita-
tion process. The input excitation process is assumed as a
white Gaussian process for stochastic textures, and a mix-
ture of structured process and white Gaussian process for
structured textures. The point spread function is modeled
by a linear geometric transform of an isotropic function.
The ML estimation of parameters is done e�ciently in the
frequency domain. The synthesis of each color component
is also done in the frequency domain. The synthesis does
not require an iterative algorithm, and the MA synthesis
algorithm is computationally attractive.

The MA model-based approach is tested with real tex-
tures. The real textures are selected from Brodatz [2] tex-
ture album and Vision Texture [7] database. In the ex-
periment with monochrome textures, images are synthe-
sized from the white Gaussian process using parameters
estimated from textures selected from Brodatz [2] texture
album. The synthesized stochastic textures are similar to
original textures. In the experiment with color textures,
both stochastic textures and structured textures are se-
lected from Visual Texture [7] database. The synthesis of
color textures is done with parameters estimated from a
small texture. Using the estimated parameter, larger im-
ages resembling original textures are synthesized. The color
and patterns of synthesized images are similar to the origi-
nal images.

2. 2-D MOVING AVERAGE MODEL

The 2-D MA model is represented in the spatial domain as
follows. Let fy(s) j s 2 
sg, where 
s = fs = (s1; s2) 2
Z�Z j 0 � s1; s2 � N � 1g be a monochrome image of size
N�N following a 2-D MA model. Then y(s) is represented
by the following convolution equation:

y(s) =
X
r2Kg

g(r)w(s	 r) = g(s) � w(s); (1)

where s; r 2 Z � Z, Kg is a �nite index set where g(s) is
de�ned, 	 is a modulo � (N;N) subtraction, � is a 2-D
circular convolution on N � N lattice, and w(s) is a 2-D
stationary random process.

With the circular closure (torus) assumption at the bound-
ary, (1) is represented in the frequency domain by applying



DFT to both sides of (1).

Y (u) = NG(u)W (u); (2)

where Y (u), G(u) and W (u) are DFT's of y(s), g(s) and
w(s), respectively.

Without any restriction on the transfer function G(u),
the MA model depends on large number of parameters, and
the accuracy of estimators will not be satisfactory since
there are not enough samples for the estimation. There-
fore, the transfer function G(u) needs be parameterized
with small set of parameters. For modeling textures hav-
ing directional and elongated patterns, the transfer function
G(u) should also be directional and elongated. For repre-
senting such transfer functions with small set of parameters,
the transfer function G(u) is assumed to be obtained by a
linear geometric transform of an isotropic function. Then
G(u) is related to a one-dimensional function H(�) by

NG(u) = H(kAuk); where A =

�
� cos � � sin �
� sin � cos �

�
(3)

and k � k is the Eucledian norm. The geometric transform
parameters � and � are elongation and orientation param-
eters, respectively. For isotropic textures, the elongation
parameter � is unity. Thus (2) can be rewritten as

Y (u) = H(kAuk)W (u): (4)

2.1. Stochastic Texture Modeling

Many natural textures such as sand, pressed cork, grass
lawn, etc. do not have strong structural trend, and the ori-
entation or alignment of patterns are random. For modeling
such stochastic textures using 2-D MA models, the input
process w(s) is assumed as a white Gaussian process with
zero mean and unit variance. Then by the Theorem 4.4.1 of
Brillinger [1], DFT of the input process w(s), W (u) in (4),
is a white complex Gaussian process with zero mean and

covariance
1

2
I, where I is a 2 � 2 identity matrix. A com-

plex Gaussian process is de�ned as a vector process with
real and imaginary Gaussian components, and detailed dis-
cussions on the complex Gaussian process and the DFT of
random processes can be found in [1]. Therefore, the DFT
Y (u) of the 2-D MA process y(s) is also a white complex
Gaussian random process with zero mean and covariance
jH(kAuk)j2

2
I, where A is the geometric transform matrix

de�ned in (3).

The model parameters are estimated by a maximum
likelihood (ML) approach, and the detailed discussion on
ML estimators of the 2-D MA model can be found in [3].
The theoretical properties of ML estimators in 2-D MA
model can also be found in [3]. The ML estimators of the
2-D MA model and their properties are summarized in the
following. De�ne �i = jH(�i)j

2 and H = f�i j i = 1; � � � ; ng,
where f�ig = fkAuk j u 2 
ug and n is the cardinality of
f�ig. Let Y = fY (u); u 2 
ug. By de�ning 
i = fu 2

u j kAuk = �ig and by de�ning Ni as the number of ele-
ments in 
i, the likelihood function of H, � and � is written

as

p(YjH; �; �) =

nY
i=1

Y
u2
i

1

��i
exp

�
�
jY (u)j2

�i

�
: (5)

The estimation is done in two stages. In the �rst stage,
the parameters �i are estimated assuming that the geomet-
ric parameters � and � are known. Then the geometric
parameters � and � are estimated by maximizing the like-
lihood function in 5. The ML estimator of �i when the ori-
entation and elongation parameters are known is obtained
as

�̂i =
1

Ni

X
u2
i

jY (u)j2; (6)

where 
i and Ni are de�ned in (5). It can be easily shown
that the ML estimators f�̂ig are unbiasedness and consis-
tent. The accuracy of an estimator can be measured by
comparing its mean square error with the Cramer-Rao lower
bound. The Cramer-Rao lower bound is derived in [3] and
we have the following relation.

MSE[�̂i] � �2i =Ni: (7)

Since the ML estimator is e�cient, the mean square error
of the ML estimator given in (6) asymptotically approaches
to the Cramer-Rao lower bound given in (7).

The elongation and the orientation of a texture can be
represented by a set of discrete values. For example, eight
di�erent orientations are su�cient for many applications,
and the orientation parameter � can be discretized to the

�nite set � = f
k�

8
; k = 0; � � � ; 7g. Similarly, eight di�erent

elongated values are su�cient for many applications, and
the elongation parameter � can be discretized to the �nite
set A = f1; 2; � � � ; 8g. We need to consider only for � � 1
since values lower than 1 can be achieved by rotation. Thus,
the parameters � and � can be estimated by maximizing the
log-likelihood function J(�; �) over the set ��A. The log-
likelihood function of � and �, J(�; �), is derived from (5).
The detailed derivation can be found in [3].

J(�; �) =

nX
i=1

h
(Ni � 1) log(�̂i) +

1

2
log(Ni)

i
(8)

From the above results, we get the following estimation
algorithm for transfer function parameters f�ig, orientation
parameter � and the elongation parameter �.

2.2. Structured Texture Modeling

Structured textures are de�ned as textures having strong
deterministic trend. For example, brick wall, herringbone
weave, ra�a mat, etc. show structured patterns. Modeling
structured textures with a stochastic MA model will not be
satisfactory since the structured information is not repre-
sented by the stochastic model. For synthesizing structured
textures, the input process in the MA model should include
deterministic trend representing structured patterns. In ad-
dition to the estimation of transfer function parameters, �i,
and geometric parameters � and �, the information on the
structured input process r(s) needs be extracted from the



sample texture where parameters are estimated. The resid-
ual in the frequency domain W (u) is computed using (4)
with estimated parameters.

W (u) = Y (u)=Ĥ(kÂuk); (9)

where Â and Ĥ are obtained from the ML estimators.
The structured input process thresholded by the 3-�

rule, and pixels with jW (u)j < 3� is replaced by zero. In
our experiment, less than 20 percent of residuals are nonzero
after thresholding in most of textures. Further, non-zero
pixels can be quantized with small number of bits without
degrading the quality of synthesized textures. The quanti-
zation into 2 bits/pixel is su�cient to synthesize structured
textures similar to real textures.

3. COLOR TEXTURE SYNTHESIS

By summarizing the discussions in Section 2, we have the
following synthesis algorithm for structured textures. For
synthesizing stochastic textures by using the algorithm given
below, the estimation of structured trend is unnecessary and
a stochastic texture is synthesized by setting the structured
trend term by zero.

Texture Synthesis Algorithm

1. Decorrelate the original color image, and obtain three
decorrelated components by principal component anal-
ysis (PCA).

2. Apply the ML estimation algorithm to each decorre-
lated component, and estimate H, � and �.

3. Using the estimated parameters, estimate the struc-
tured trend and threshold them by the 3-� rule. The
non-zero elements of estimated trend are quantized
into 2 bits/pixel.

4. Scale the estimated MA parameters �i and the esti-
mated deterministic by the ratio between the sizes of
the original image and the image to be synthesized.

5. Reconstruct the input residual process by (9) and
each decorrelated component is synthesized by (4).

6. Repeat steps 2-5 for three components.

7. Apply the inverse PCA transform to the synthesized
image, and a color texture is obtained.

4. EXPERIMENTAL RESULTS

Both stochastic and structured textures are synthesized by
the 2-D MA modeling approach. Stochastic textures are
de�ned as those without any deterministic trend, and are
synthesized by a 2-D MA model with white Gaussian in-
put process w(s). Structured textures are de�ned as those
having a strong deterministic trend, and are synthesized by
a 2-D MA model with a composite input process which is
a sum of structured residual process and white Gaussian
process.

Monochrome textures are special cases of color textures,
and the validity of texture synthesis algorithm can be demon-
strated by synthesizing realistic monochrome textures. Fig-
ure 2 shows original and synthesized textures. The monochrome

textures shown in the �rst column of Figure 2 are selected
from Brodatz texture album [2], and they are from the
top: pressed cork (D04), ra�a woven with cotton threads
(D51), herringbone weave (D17), and cotton canvas (D77)
textures. MA parameters �i and geometric parameters �
and � are estimated by the ML estimation algorithm given
in Section 2. Using the estimated parameters, a texture
resembling the original is synthesized by the texture syn-
thesis algorithm given Section 3. The synthesized textures
are shown in the second column of Figure 2, and they are
similar to the original images in the �rst column of Figure 2.
Note that the textures in the last two rows are synthesized
with the estimated structured input process.

For the synthesis of color textures, textures are selected
from the Visual Texture [7] database. The original and
synthesized textures are shown in Figure 3. The original
textures are of size 128 � 128, and include both stochastic
and structured textures. They are from the top, Fabric15,
Food6, Bark10, and Brick7 textures. Top two rows are
stochastic textures, and bottom two rows are structured
textures. The color, size, and orientations of texture pat-
terns in the original images are all di�erent. To demonstrate
the synthesis of larger textures resembling original textures,
256�256 color textures are synthesized from the parameters
estimated from the original textures of size 128� 128. The
PCA transform is applied to each original texture, and three
uncorrelated components are obtained. As explained in the
synthesis algorithm in Section 3, the model parameters are
estimated and scaled by the factor of 2 for each decorre-
lated component. Using the estimated and scaled param-
eters, three monochrome textures corresponding to three
decorrelated components are synthesized. The synthesized
components in the decorrelated space is transformed back
to the RGB color space by applying the inverse PCA trans-
form.
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Figure 2: The original (left) and synthesized (right)
monochrome textures. From the top, Pressed cork (D04),
Ra�a woven with cotton threads (D51), Herringbone weave
(D17), and Cotton canvas (D77) textures.
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Figure 3: The original (left) and synthesized (right) color
textures. They are from the top, Fabric15, Food6, Bark10,
and Brick7 textures.


