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ABSTRACT

We consider a parametric family of density functions of the
type exp(�jxj�2 ) for modeling acoustic feature vectors used
in automatic recognition of speech. The parameter � is
a measure of the impulsiveness as well as the nongaussian
nature of the data. While previous work has focussed on
estimating the mean and the variance of the data here we
attempt to estimate the impulsiveness � from the data on a
maximum likelihood basis. We show that there is a balance
between � and the number of data points N that must be
satis�ed before maximum likelihood estimation is carried
out. Numerical experiments are performed on multidimen-
sional vectors obtained from speech data.

1. INTRODUCTION

In [2] one considers mixtures of densities of the form

f(x) =
�p
�
exp(�h(
 (x� �)2

�
));

where � and 
 are chosen so thatZ
f(x)dx =

1

�

Z
(x� �)2f(x)dx = 1: (1)

Particular attention was given to the choice h(t) = t�=2,
t > 0, � > 0. This particular choice of density has been
studied in the literature and is known as alpha-stable den-
sities (or � densities for short) as well as power exponential
distributions, cf. [8, 9, 10, 11]. As a consequence of encour-
aging results from using � < 0:5 in [2] we became interested
in �nding the \optimal" value of �. In so doing, this leads
us to a discussion of how one would go about �nding the
\optimal" value, and whether convergence to the correct
value of � could be expected for large amounts of data.
We ares also interested in using di�erent values of the pa-
rameter � for di�erent mixture components when mixture
densities are used for modeling purposes.

2. SOME ANALYTICAL CONSIDERATIONS

For simplicity, �rst consider the one-component mixture
case and discuss whether maximization of the log-likelihood
function

L(�; �;�) =

NY
i=1

f(xi;�; �;�)
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yields the correct � as N !1. We take fxigNi=1 to be one-
dimensional data. The maximum likelihood tells us that
maximizing L(�; �;�) yields consistent estimates for �, �
and � (see [6]).

We shall attempt to verify if this is so for the densi-
ties we are considering. As the logarithm of L is strictly
increasing, it su�ces to maximize

1

N
log L(�; �;�) =

1

N

NX
i=1

log f(xi;�; �;�):

As N !1, it is reasonable to expect that

1

N

NX
i=1

log f(xi;�; �;�)

converges almost surely (in probability) to

H(�; �;�) = Eflog f(X;�; �;�)g;
where X is the random variable from which the samples xi
are drawn. To verify that maximizing Eflog f(X;�; �;�)g
is the sane thing to do we assume the random variable X
has the probability density f(X; ~�; ~�; ~�). In this case, the
optimal choice for �, �, � ought to be ~�, ~� and ~�.

As mentioned before, � = ~�, � = ~� and � = ~� ought to
be the global maximum for H(�; �;�). However, not know-
ing the true value of ~�, ~� and ~� we can, of course, not com-
pute H(�; �; �) and are left with maximizing L(�; �;�) =QN

i=1 f(x
i;�; �;�). This is equivalent to maximizing

1

N
log L = log � � 1

2
log ��

�



�

��=2 1

N

NX
i=1

jxi � �j�:

One would expect that 1
N
log L(�; �; �) � H(�; �;�) and,

therefore, that the maximum would occur at � = ~�, � = ~�
and � = ~� for large values of N . At this point we state the
following result without proof.

Lemma 1 Let L�(�;�) = max��0
1
N log L(�; �;�). Then

L�(�;�)!1 as �! 0

The last lemma shows that max�;� 1
N
log L(�; �;�) goes

to 1 as � ! 0. However, it can be shown that this is not
the case for H(�; �;�). Two salient features of this fact
are as follows. First, one must, therefore, take care that
the value of � does not become too small when seeking a
maximum of 1

N
log L. Next, strictly speaking maximizing

L�(�;�) and H(�; �;�) do not satisfy identical objectives.



3. EM TYPE STRATEGIES

For applications to speech recognition, the data is multidi-
mensional and of a nature so complex as not to be accu-
rately described in a single �-density. In [2] various mix-
tures of multidimensional �-densities were introduced and
successfully applied to speech recognition. However, the
value of � was �xed a priori and left constant over the
mixture components. We will discuss how the individual
mixture components can have di�ering values of � and how
one goes about �nding the optimal choices of �.

Let us describe how mixtures of multidimensional �-
densities are constructed. The individual components are
given by

p(xj�`) = �d(�
`)qQd

i=1 �
`
i

e
�

�

d(�

`)
Pd

i=1

(xi��
`
i
)2

�`
i

��`=2
(2)

where

�d(�) =
�

2

�( d2 )

(d�)
d
2

�( d+2� )
d
2

�( d
�
)
d
2+1

; and 
d(�) =
�( d+2� )

d�( d� )

and �` denotes the collection of parameters �`, �` and �`,
where ` = 1; : : : ;m. The mixture density is now given by

P (xj�;!) =
mX
`=1

!
`
p(xj�`):

The log-likelihood of a data set fxkgNk=1 is, thus, given as

log L =

NX
k=1

log

 
mX
`=1

!
`
p(xj�`)

!
:

We are ultimately interested in maximizing log L. A desir-
able property of an iteration scheme would, therefore, be
to increase the value of log L. We denote old parameters
by `hatted' quantities and and mimic the EM philosophy as
expounded in [5]. We have

log L � log L̂ =

NX
k=1

log

(Pm

`=1
!`p(xkj�`)Pm

j=1
!̂jp(xkj�̂j) �

!̂`p(xkj�̂`)
!̂`p(xkj�̂`)

)

�
NX
k=1

mX
`=1

!̂`p(xkj�̂`)Pm

j=1 !̂
jp(xkj�̂j)

�

log

�
!`p(xkj�`)
!̂jp(xkj�̂j)

�

where the well known Jensen's inequality [1] arising from
the concavity of the logarithmic function has been used in

the last step with b` = !̂`p(xkj�̂`)
�Pm

j=1 !̂
jp(xkj�̂j)

��1
for ` = 1; : : : ; m. We regroup the last equation into three
types of terms.

log L� log L̂ � A+B +C

where

A(!; !̂; �̂) =

mX
`=1

A` log(!
`)

B(�; !̂; �̂) =

NX
k=1

mX
`=1

A`k log p(x
kj�`)

C(!̂; �̂) =

NX
k=1

mX
`=1

A`k log(!̂
`
p(xkj�̂`))

and

A`k =
!̂`p(xkj�̂`)Pm

j=1
!̂jp(xkj�̂j) and A` =

NX
k=1

A`k:

Note that the term C only depends on old parameters and
A depends only on !`, ` = 1; : : : ;m and old parameters,
whereas B depends on � and old parameters. It is im-
poratnt to note for our purposes that only B depends on
the new values of �, namely, �̂ to be updated. Clearly,
(log L�log L̂) = 0 when the old parameters and the new pa-

rameters are equal. Maximizing (log L�log L̂) for a particu-
lar parameter while the others are �xed guarantees that the
log-likelihood does not decrease. This can be done explicity
for !`, ` = 1; : : : ;m subject to the constraint

Pm

`=1 !
` = 1.

Using the method of Lagrange multiplier we arrive at
the following equation

A` ��!` = 0; ` = 1; : : : ;m;

where the parameter � is the Lagrange multiplier. Solving
for � we get � =

Pm

`=1
A` = N , which yields !` = 1

N
A`.

This was done in [2]. Similarly, one may try to maximize
with respect to �` and �`, but this cannot be done explicitly.
The stationary equation is available in [2] and the update
formulas for iteratively computing �`i and �`i are exactly
analogous to those in [2] except that now the parameter � in
considering the `-th mixture component has to be replaced
by �` for all ` = 1; : : : ; m. It remains to construct update
formulas for �` for ` = 1; : : : ;m. We have

log p(xj�`) =
1

2
(

dX
i=1

log �`i ) + log �d(�
`) (3)

�
 

d(�

`)

dX
i=1

(xi � �`i)
2

�`i

!�`=2

which makes it possible to separate the �` variables.

B(�; !̂; �̂) =

mX
`=1

B
`(�; !̂; �̂)

where

B
`(�; !̂; �̂) =

NX
k=1

A`k

 
1

2
(

dX
i=1

log �`i ) + log �d(�
`)

�
�

d(�

`)
��`=2 dX

i=1

(xki � �`i)
2

�`i

!�`=2
1
A

Since only B depends on new values of the parameter �, to
maximize (log L � log L̂) with respect to �`, it su�ces to

maximize B`(�; !̂; �̂) with respect to �`. This can be done



numerically. However, we decided to maximize B`(�; !̂; �̂)
by brute force. Note that this can be done without incur-
ring much computational cost. Assuming that we wish to
compute B`(�; !̂; �̂) for �` = �min, �min +��; : : :, �min+
N��� = �max we note that the greatest computational cost

is in computing Sk` =
Pd

i=1

(xki��
`
i)
2

�`
i

for k = 1; 2; : : : ;N

and ` = 1; 2; : : : ; m. Once (Sk`)
�� and (Sk`)

�min have
been computed the quantities (Sk`)

�min+j�� can easily be
computed from the corresponding value for (j � 1) by one
single multiplication. In any case, as we are maximizing
(log L�log L̂) over a discrete set of �'s, that contain the pre-
vious value of �, we are guaranteed that the log-likelihood
is nondecreasing.

4. SPEECH RECOGNITION EXPERIMENTS

Digitized speech sampled at a rate of 16 Khz is consid-
ered. A frame consists of a segment of speech of duration
25 msec, and produces an 39 dimensional acoustic cepstral
vector via the following process, which is standard in speech
recognition literature. Frames are advanced every 10 msec
to obtain succeeding acoustic vectors.

First, magnitudes of discrete Fourier transform of sam-
ples of speech data in a frame are considered in a logarith-
mically warped frequency scale. Next, these amplitude val-
ues themselves are transformed to a logarithmic scale, and
subsequently, a rotation in the form of discrete cosine trans-
form is applied. The �rst 13 components of the resulting
vector are retained. First and the second order di�erences
of the sequence of vectors so obtained are then appended
to the original vector to obtain the 39 dimensional cesptral
acoustic vector.

As in supervised learning tasks, we assume that these
vectors are labeled according to the basic sounds they cor-
respond to. In fact, the set of 46 phonemes are subdivided
into a set of 126 di�erent variants each corresponding to
a `state' in the hidden Markov model used for recognition
purposes. They are further subdivided into more elemen-
tal sounds called allophones or leaves by using the method
of decision trees depending on the context in which they
occur, (see, e.g., [3, 4, 7] for more details).

Two measurable quantities to evaluate our technique for
optimizing � are average log-likelihood and performance of
the speech recognizer. We deal with the former �rst. The
data used is from a speci�c leaf (to be speci�c, leaf no. 513).
We computed the log-likelihood after each iteration with
and without using the update formula for �. We found that
the likelihood gain was considerable � = 2. The conclusion
by examining the graphs for the log-likelihood is that the
update formula for � gives consistent improvement in log-
likelihood. See Figure 1.

As the ultimate objective in speech recognition is to
discriminate di�erent sounds, we decided to evaluate the
discriminatory power of our density estimates. To this end,
we evaluate the densities for all allophones (there are ap-
proximately 3500 of them) and compare the density of the
\correct" allophone with all the others. If the correct allo-
phone yields higher likelihood value than all the other allo-
phone, we indeed achieve our goal. We produce frequencies
for the correct leaf to be among the top 1, 10, 100 and 1000
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Figure 1: Comparison of � update vs non-update for � = 2

highest densities. These numbers are displayed in Table 1.
As can be seen, the discriminatory power of the scheme with
updated �'s is signi�cantly better than without updating �.

Preliminary recognition experiments were carried out
on the broadcast transcription task [12] by allowing dif-
ferent mixture components to have di�erent values of the
parameter � as compared with the �xed values � = 1
and � = 2. The results of this experiment for di�erent
acoustic conditions are tabulated Table 2. In this table, the
various acoustic conditions can be described as: prepared
speech (F0), spontaneous speech (F1), low �delity (tele-
phone) speech (F2), speech with background music (F4),
and non-native speakers (F5).

The distribution of �, which was constrained to lie be-
tween 0:10 and 2:0 for approximately 121,000 mixture com-
ponents is shown in Figure 2. Note that preferred values
of � tends to be less that 1:0, con�rming on a systematic
basis that nongaussian mixture components are preferred.

5. CONCLUSION

We have addressed the issue of �nding the optimal value
of � in densities of the type (1) for speech data. Further-
more, the strategy of allowing di�erent mixture components
to have di�erent �-values were also examined in the con-
text of LVCSR. The results indicate a clear departure from
gaussian mixture modeling.
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