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ABSTRACT

We consider the problem of linear polyphase blind equal-
ization (BE), i.e. we are interested in equalizing the output
of a single-input-multiple-output (SIMO) channel, without
observing its input. A recent result by Liu and Dong [1]
showed that if the sub-channel polynomials are co-prime
in the z-domain, then the equalizer output whiteness is
necessary and su�cient for the equalization of a white
input. Based on this observation, we propose a simple
decorrelation criterion for second-order based BE. Due to
its second-order nature, this criterion is insensitive to the
distance of the input from Gaussianity, hence it achieves
BE even for Gaussian or non-Gaussian inputs. Moreover,
unlike other second-order techniques, our approach by-
passes channel estimation and computes directly the equal-
izer. By doing so, it avoids the problem of ill-conditioning
due to channel order mismatch which is crucial to other
techniques. Combined to its good convergence properties,
these characteristics make the proposed technique an at-
tractive option for robust polyphase BE, as evidenced by
both our analysis and computer simulation results.

1. INTRODUCTION

Blind equalization of polyphase (SIMO) channels is a �eld
that has been receiving increased attention in recent years.
Applications include fractionally-spaced signal processing
at the receiver, and/or reception through an array of sen-
sors. Despite the early introduction of polyphase receivers
more than two decades ago [2], [3], a number of important
advantages they o�er became apparent only recently. We
outline some of these important results:

1. In [4], Tong, Xu, and Kailath showed that when the
sub-channels corresponding to the di�erent sampling
phases of the channel response are co-prime, channel
identi�cation is possible based solely on the received
signal's second-order statistics (SOS). This result ini-
tiated a considerable amount of research in the area
of SOS-based BE which has lead to many techniques
that achieve BE without the use of higher-order statis-
tics (HOS).
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2. In [5], Slock showed that under the same conditions
mentioned in [4], perfect (zero forcing (ZF)) equaliza-
tion of linear channels is possible in the absence of
noise with �nite-length �lters. This has allowed for
a better understanding of the behavior of polyphase
receivers. Moreover, it has lead to new results regard-
ing the behavior of adaptive equalization algorithms
when used with polyphase receivers.

3. One of the most notable results which made use of 2
above is linked to the behavior of the popular constant
modulus algorithm (CMA) [6]: it was shown in [7], [8],
[9] that when fractionally-spaced, the CMA is globally
convergent in the absence of noise (again under the co-
prime assumption). This result shows how the long-
standing problem of local minima of the CMA can be
avoided if fractional spacing and/or antenna arrays
are used at the receiver.

Together with the above results, a number of problems
in the proposed techniques remain. Namely, the structure-
based approaches that soon followed [4], such as [5], [10],
[11] su�er from lack of robustness with respect to the es-
timated channel order: order mismatch results in wrong
dimensions of the signal or noise subspace, which may lead
to severe performance degradation. As a result, alterna-
tives to structure-based methods such as [12], (see also
[13]) and [14] have been proposed. These techniques rely
on SOS statistical criteria (as opposed to the structure of
the covariance matrix) in order to estimate the channel
response. Even though they are more robust to the prob-
lem of channel order mismatch, a drawback is that they
need to estimate the channel �rst in order to compute the
equalizer. This may a�ect performance if not done judi-
ciously, and adds extra complexity to the equalizer design,
as opposed to direct BE algorithms (such as the CMA)
that compute directly the equalizer.

An interesting twist in the BE literature came recently
when Liu and Dong showed in [1] that in the case of a white
input, the equalizer output whiteness is a necessary and
su�cient condition for BE. Based on this theorem, direct
SOS BE algorithms were proposed in [15], [16]. These
algorithms o�er the double bene�t of being insensitive to
both the input distance from Gaussianity (unlike HOS-
based algorithms such as the CMA) and to channel order
mismatch (unlike most SOS-based methods), as they do
not require channel estimation. In this paper we focus



on the adaptive algorithm proposed in [16] and study its
performance in terms of convergence behavior.

2. A WHITENING APPROACH FOR
POLYPHASE BLIND EQUALIZATION

The sampled polyphase output of a SIMO (1-input-m-
output) channel can be written in vector notation as fol-
lows

x(n) =

M�1X
k=0

s(n� k)h(k) + b(n) (1)

where the vectors x, h, b are all m � 1 and denote the
polyphase received signal, channel, and additive noise, re-
spectively. Each of the elements of these vectors corre-
sponds to a di�erent phase (sampling instant and/ or an-
tenna element). The channel h is assumed to be time-
invariant and FIR of length M , whereas the input fs(n)g
is assumed to be an i.i.d. symbol sequence, and b(n) de-
notes the i.i.d. noise sequence. Stacking K successive sam-
ples in X(n) = [xT (n);xT (n � 1); :::; xT (n � K + 1)]T ,
B(n) = [bT (n);bT (n � 1); :::;bT (n �K + 1)]T yields the
well-known linear model, where both channel and symbols
are unknown quantities:

X(n) = H[s(n); ::; s(n�K �M + 2)]T +B(n) (2)

where

H =

0
@

h(0) � � � h(M�1) 0 � � � 0
...

0 � � � 0 h(0) � � � h(M�1)

1
A
(3)

is the Sylvester-like channel matrix of size mK �
(M+K�1). The output of a linear multichannel receiver
with mK taps (here denoted W ) is de�ned by:

y(n)
def
= WHX(n)

In the above T and H denote transpose, and Hermitian
transpose, respectively.

The following theorem regarding the blind equalizabil-
ity of SIMO channels appeared recently in [1] for the case
of a white input s(n):

Theorem 1 (Whitening Theorem) Assuming that the in-
put s(n) is white, that the channel matrix H has full col-
umn rank (classical length and zero condition [5]), and that
there is no additive noise, the equalizer output y(n) will
be white if and only if zero forcing equalization has been
achieved, up to some delay d, gain �, and unknown phase
rotation �, i.e.

y(n) = �ej�s(n� d) (4)

It is well known that this result does not hold in the
traditional single channel case. The reason is that perfect
equalizability (hence output whiteness) in the single chan-
nel case requires an IIR receiver structure. Thus output
whiteness can indeed be achieved, however the IIR struc-
ture allows for an arbitrary all-pass �ltering ambiguity.

The key issue here is that multichannel (polyphase)
equalizability can be achieved with a �nite length (FIR)
equalizer, for example W can be drawn from the pseudo-
inverse of H. Enforcing the FIR property of the combined
channel-equalizer removes the all-pass ambiguity, since non
trivial all-pass �lters cannot be FIR! In the sequel we will
see how this important Theorem can lead to robust SOS-
based methods for direct adaptive blind equalization.

3. A DECORRELATION ALGORITHM FOR
POLYPHASE BLIND EQUALIZATION

Based on the above theorem, a direct BE criterion can be
formulated, so as to force the equalizer output to be white,
as follows (see [16]):

min
W

J(W ) = (r0 � 1)2 + �

N�1X
l=1

jrlj
2 (5)

where rl is the autocorrelation of the equalizer output de-
�ned as E(y(k)y�(k � l)), and � is a weighting scalar. N
is the maximum achievable delay l for which rl is non-
zero (in the absence of noise). Denoting the channel-
equalizer cascade as G(z) =

Pm

i=1
Hi(z)Wi(z), where

Hi(z), Wi(z) denote the polynomials corresponding to
the i-th phase of channel and equalizer, respectively, the
equalizer output can be written in the absence of noise
in the z-domain as Y (z) = G(z)S(z), or in the time do-
main as y(n) = GTS(n). Then G = [g1 � � � gN ]

T and
S(n) = [s(n) � � � s(n � N + 1)]T will have N coe�cients
each.

The corresponding stochastic gradient adaptive algo-
rithm that implements the criterion (5) is given by

W (k + 1) =W (k)� �[(r(0)� 1)y�(k)X(k)+

+�

N�1X
l=1

r�(l)y�(k � l)X(k) + �r(l)y�(k)X(k�l)]
(6)

In order to implement (6) in practice, we need to esti-
mate the correlation terms rl, for example with simple
rectangular-window averaging:

r̂l(k) =

�X
i=1

y(k�i+1)y�(k�i�l+1) (7)

Notice that despite the second-order nature of the criterion
(5), if we choose � = 0 and � = 1 (instantaneous averag-
ing), (6) is identical to the CMA 2-2 algorithm. However
for � > 1 and/or � > 0 the algorithm (6) is di�erent from
the CMA which is memoryless and uses instantaneous HOS
of the equalizer output to penalize non-Gaussianity. This
will be evidenced in section 5 by the ability of (6) to equal-
ize super-Gaussian signals.

4. CONVERGENCE ANALYSIS

In order to demonstrate the convergence behavior of the
algorithm (6), we will examine the stationary points of the
cost function in (5). As is typically done in the analysis of
BE cost functions, we will analyze J in the cascade domain,



hence J will be denoted as a function of the cascade vector:
J(G). The obtained results can be then easily translated to
the equalizer domainW , as we assume that the zeros-and-
length condition is satis�ed (this guarantees a one-to-one
mapping between the stationary points in the G and W
domains, since in this case H is full column rank). We
will also assume the absence of additive noise in our anal-
ysis. Due to its simplicity and useful insight, we will only
consider the simple case of two coe�cients in the global re-
sponse (N = 2). In the following we also �x for simplicity
� = 2, and the input variance �2s = Ejs(n)j2 = 1.

4.1. Analysis
In this case G = [g1 g2]

T and y(n) = g1s(n)+g2s(n�1).
The cost function in (5) then takes the form:

J(G) =
�
jg1j

2+jg2j
2�1
�2

+2jg1j
2jg2j

2 (8)

and the stationary points of J(G) are found from @J(G)
@g�

i

= 0

for i = 1; 2, which gives

2g1(jg1j
2 + 2jg2j

2 � 1) = 0
2g2(jg2j

2 + 2jg1j
2 � 1) = 0

(9)

Eq. (9) has four classes of solutions. The �rst two classes
are
�
jg1j

2 = 1 ; g2 = 0
�
and

�
jg2j

2 = 1 ; g1 = 0
�
and con-

stitute the global minima of the cost function in (8). The
third \class" is the solution (g1 = 0 ; g2 = 0) and consti-
tutes a local maximum: denoting a general perturbation

setting in the 2-D plane around [0 0] as eG = [��1 � �2],
where �1, �2 are small positive constants, we �nd that

J( eG) ' 1�2(�21 + �22) < J([0 0]), 8 (�1; �2). Hence the
setting G = [0 0] is a local maximum. The fourth class of
solutions is:

jg1j
2 = jg2j

2 = 1=3 (10)

Notice that J(G) evaluated at the setting (10) equals
J(G0) = 1=3. In order to show that the solution (10) is a
saddle point, we �rst consider the following perturbation
setting:

jeg1j2 = 1=3+�
jeg2j2 = 1=3��

(11)

where � is a small positive constant. The value of J at
the setting (11) equals 1=3�2�2 < 1=3 = J(G0). Hence a
setting of the type (10) cannot be a local minimum. Now
we consider the following perturbation:

jeg1j2 = 1=3+�
jeg2j2 = 1=3+�

(12)

The value of J at the settings of the type (12) equals 1=3+
6�2 > J(G0). Hence a setting of the type (10) cannot be a
local maximum either. As a result, it can only be a saddle
point. We summarize the above analysis in the following
theorem:

Theorem 2 (Convergence in the case N = 2) In the case
where the cascade response G has only two coe�cients
(N = 2), � = 2, �2s = 1 and no additive noise is present,
the cost function (5) has no undesired local minima. Its

only minima are the optimal global settings G1 = [ej� 0]

and G2 = [0 ej� ], where �1, �2 are arbitrary phases.

4.2. Discussion
According to Theorem 2, in the case N = 2, the al-

gorithm (6) will be globally convergent to its optimal set-
tings in the absence of noise. Notice also that the criterion
achieves gain identi�cation, whereas it results in a phase
ambiguity that appears typically in blind equalization al-
gorithms. Since the zeros-and-length condition has been
assumed (in order to satisfy Theorem 1), this global con-
vergence property will reect to the equalizer domainW as
well. This result is important as the role of local minima is
known to be crucial for several blind adaptive algorithms.
The extension of Theorem 1 to the case N > 2 is the sub-
ject of current research.

In order to demonstrate the shape of the saddle points
predicted by the above analysis, we consider the real case,
i.e. g1, g2, are both real coe�cients. Figure 1 shows the
shape of the cost function J(G) around a real setting G0

of the form (10). We have superimposed on this �gure the
level of the center value J(G0) = 1=3. As can be seen from
the �gure, G0 is clearly a saddle point of J(G). Notice also
that the positive slope of the saddle point can be seen in
Figure 1 to be three times larger than the corresponding
negative slope, as predicted by the analysis in section 4.1.

5. COMPUTER SIMULATIONS

In order to demonstrate the advantages of the algorithm
(6) that stem from its second-order nature, we simulate
a super-Gaussian input fs(k)g that equals 0 with prob-
ability 3=4 and otherwise takes on equi-probably one of
the four values �1� j. Notice that s(k) is zero-mean and
has a positive kurtosis (K(s) = 3=4). s(k) is transmit-
ted through a single-input-two-output polyphase channel,
whose two phases have the following impulse responses:
h1 = [1 0:5], h2 = [1 2] (notice that the polynomials H1(z)
and H2(z) have no common roots, thus making SOS-based
blind equalization possible). The signal is received with an
SNR of 30 dB on each branch, and then passed through a
two-phase fractionally spaced equalizer of 3 taps/phase. In
two separate experiments, the equalizer is updated through
the CMA and the decorrelation algorithm (6), respectively.
In both cases the equalizer is center-spike initialized and
the stepsize � = 4 � 10�4. We also use instantaneous av-
eraging (� = 1) for the algorithm (6). We evaluate the
algorithm performance by plotting the evolution of the
closed-eye measure of the equalizer output as the algo-
rithm adapts. As can be seen in Figure 2, the algorithm
(6) manages to quickly open the channel eye and retrieve
the transmitted constellation, in accordance with our ex-
pectations. On the other hand, the CMA fails to equalize
the signal due to its super-Gaussian nature.

6. CONCLUSIONS

We have considered the problem of blind equalization of
linear co-prime polyphase channels. Based on a recently
shown whiteness theorem, we proposed a statistical cri-
terion that relies on the SOS of the equalizer output in
order to achieve BE of a white input. The optimization
of this criterion can be done with a simple (decorrela-
tion) algorithm. This approach is robust in the sense that
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Figure 1. A saddle point (N = 2)

the performance does not depend on the input distance
from Gaussianity or on the estimation of the channel or-
der. Moreover, a convergence analysis in the case of two
coe�cients in the combined channel/equalizer domain has
shown the global convergence property of the proposed al-
gorithm. These positive features have been corroborated
by computer simulated results. We believe that these char-
acteristics make the decorrelation approach attractive for
a number of BE applications.
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