
TIME SERIES PREDICTION VIA NEURAL NETWORK INVERSION

Lian Yan and David J. Miller

Department of Electrical Engineering
The Pennsylvania State University

University Park, Pa. 16802

ABSTRACT

In this work, we propose neural network inversion of a back-
ward predictor as a technique for multi-step prediction of
dynamic time series. It may be di�cult to train a large
network to capture the correlation that exists in some dy-
namic time series represented by small data sets. The new
approach combines an estimate obtained from a forward
predictor with an estimate obtained by inverting a back-
ward predictor to more e�ciently capture the correlation
and to achieve more accurate predictions. Inversion allows
us to make causal use of prediction backward in time. Also
a new regularization method is developed to make neural
network inversion less ill-posed. Experimental results on
two benchmark time series demonstrate the new approach's
signi�cant improvement over standard forward prediction,
given comparable complexity.

1. INTRODUCTION

The goal of time series prediction can be stated succinctly as
follows: given a sequence up to time N , x(1); x(2); :::; x(N),
�nd the continuation x(N+1); x(N+2); :::. The time series
may arise from sampling a continuous time system, and may
be either stochastic or deterministic in origin. Statistical
methods and neural networks are two major approaches to
time series prediction. A statistical method is model driven
and parametric. A neural network is data driven and less
parametric. Neural networks have been applied to many
practical problems and have demonstrated good results, e.g.
[3],[10]. They have also shown better performance than
statistical methods for some time series problems, especially
for long-term prediction [1].

When a neural network is used as a standard (forward)
predictor, the estimate is the output of the neural network
NN(�):

Xo = NN(Xi) (1)

Here, Xi = (xN ; xN�1; :::; xN�T+1) is the input of the net-
work, and Xo = (xN+1; xN+2; :::; xN+L) is the prediction.
This network predicts L steps in the future based on T steps
in the past. The work in this paper is only for L > 1, which
is the multi-step (vector) prediction problem. Multi-step
prediction is required for many applications, such as ex-
tended weather forecast, economic trend estimation, and
predictive vector quantization [2]. Predicting farther in
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the future rather than just the immediate next step makes
multi-step prediction a more complex problem than single
step prediction.

Sometimes the correlation between L future points and
T past points is di�cult to learn well, especially for dynamic
time series with limited available data. Then (1) may only
partially capture the correlation. The correlation that is
learned from training in the positive time direction (learning
a forward predictor) is referred to as forward correlation.
However, we also can learn the correlation from training in
the negative time direction [8], thus obtaining what we refer
to as backward correlation. When the forward correlation
is not exactly the same as the backward correlation, their
combination will capture more of the correlation than either
one alone. We will see, though the backward correlation is
non-causal in form, a neural network inversion technique
can make the overall system causal and practically useful.

In the next section we will consider neural network in-
version. Prediction via neural network inversion will be de-
scribed in section 3. Then we will show some experimental
results on two benchmark time series in section 4.

2. NEURAL NETWORK INVERSION

The problem of training a feedforward neural network is to
determine a number of adjustable parameters or connection
weights on the basis of a training set. A trained feedforward
neural network can be regarded as a nonlinear mapping
from the input space to the output space. Once a network
has been trained on a training set, all the weights are �xed.
Thus the mapping from the input space to the output space
is determined. This mapping is referred to as the forward
mapping:

Y = F (W ;X) (2)

Here, X is the input vector, Y is the output vector, and
W denotes the �xed weights of the trained network. In
general, the forward mapping is a many-to-one mapping,
because each of the desired outputs usually corresponds to
several di�erent possible inputs.

A neural network can be trained via supervised learning,
which entails an optimization problem that can be tackled
by a gradient descent (backpropagation) procedure [3]. The
cost function is the mean square error between the speci�ed
(object) output (Os) and the actual output of the network,
as follows:

C = E(F (W ;X)�Os)
2 (3)



The weights are adjusted by a gradient descent method in
the following way:

W
i+1 =W

i
� �
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@W
(4)

Here, � is the learning rate.
In contrast, after a neural network is trained, the prob-

lem of inversion is to �nd inputs X, which yield a given
output Y [5], [9]. So inverting a neural network �nds the
mapping from the output space to the input space, which
is referred to as the inverse mapping:

F
�1 = Y ! X (5)

The inverse mapping is usually a one-to-many mapping, so
the inverse problem is an ill-posed problem in the sense
that it has no unique solution and is highly sensitive to
initialization [4], [5].

The inversion problem can also be formulated as min-
imization of the mean square error between the speci�ed
output and the actual output of the network. Now the net-
work has already been trained, and W is �xed, so the actual
output depends on the input X rather than W . The cost
function for inversion is the same as (3), but we adjust the
input X by gradient descent as follows:

X
i+1 = X
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(6)

Neural network inversion has been applied to various
problems, such as analyzing and improving generalization
performance of trained networks [5], [9], improving and ex-
panding a training set [5], [9], adaptive control [3], classi�-
cation [4], and speech recognition [6]. In the next section,
we develop an algorithm for time series prediction based on
neural network inversion.

3. PREDICTION VIA INVERSION

As stated in (1), standard prediction methods only try to
learn the correlation in a time series in the positive time
direction, which tells us how the time series behaves in the
future based on the past sequence. However, for a given
training set, we also can learn the correlation in the neg-
ative time direction, which tells us what behavior in the
past can cause the observed \future" sequence. This kind
of information is helpful to grasp the correlation in a time
series when it is di�cult to learn the correlation only from
the positive time direction training. Especially for a highly
dynamic series with limited available data, the di�culty to
learn the complex correlation function will be more serious.
Thus, from the positive time direction training, we learn
the forward correlation, which only partially represents the
correlation. Now, in addition to the forward correlation,
the backward correlation is learned from the negative time
direction, which also partially represents the correlation.
Generally, for a nonlinear dynamic time series, the infor-
mation included in the forward correlation is di�erent from
that in the backward correlation. When we combine esti-
mates of both correlations, more knowledge of the correla-
tion can be used for prediction. Consequently, predictions
based on bidirectional correlation may be expected to be
more accurate, which will be seen in section 4.

For a Tf -step prediction problem, a forward prediction
neural network NNf(�) can be learned from the positive
time direction:

~Xf
o = NNf(X

f
i ) (7)

Here, ~Xf
o = (~xN+1; ~xN+2; :::; ~xN+Tf ) is the output of the

network and Xf
i = (xN ; xN�1; :::; xN�Lf+1) is the input of

the network. This network estimates the Tf steps in the
future according to the Lf steps in the past.

In addition to the forward prediction (7), which repre-
sents the forward correlation, a backward prediction net-
work NNb(�) is also trained from the negative time direc-
tion to obtain the mapping, which represents the backward
correlation:

~Xb
o = NNb(X

b
i ) (8)

Here, ~Xb
o = (~xN ; ~xN�1; :::; ~xN�Tb+1) is the output of the

network and Xb
i = (xN+1; xN+2; :::; xN+Lb) is the input of

the network. This network estimates the Tb steps in the past
according to the Lb steps in the future. Note this network
is non-causal in form. After training, it has to be inverted
during use to estimate future steps based on past steps,
and make the overall system (including the forward and
backward prediction networks) causal. After the inversion,
we get the following mapping:

~Xb
i = NN

�1

b (Xb
o) (9)

Here, Xb
o = (xN ; xN�1; :::; xN�Tb+1), and ~Xb

i is an estimate
of Xb

i . Generally, we set Lb = Tf , which means that we

obtain an estimate ~Xb
i for the next Tf steps via inversion.

While the output vector length Tf of the forward prediction
network is �xed for a speci�c problem, the output vector
length Tb of the backward prediction network can be chosen
freely. Thus, compared to Tf , a smaller Tb can be selected,
which may allow one to achieve greater prediction accuracy.
It is known that predicting a closer point in time is gener-
ally easier than predicting a further one, especially for a
dynamic time series, because the correlation among close
points in time is stronger. Accordingly, we can predict a
shorter vector more accurately than a longer one. In terms
of training, a simpler network with less output units is also
easier to train. For a time series with limited available data,
a smaller network can be trained well with desired general-
ization ability1 , while a large size network may be over�t-
ted from training. Thus, the backward prediction network
is generally more reliable than the forward one. That is
another advantage of the new approach.

We have noted that neural network inversion is an ill-
posed problem, which highly depends on initialization and
has no unique solution, so ~Xb

i may be unreliable. However,
we have also obtained the forward correlation. Thus we
suggest to incorporate knowledge of the forward correlation
to regularize the inversion. In particular, we propose the
following regularized inversion cost function:

Cr = E(F (W ;X)� Os)
2 + �E(X �

~Xf
o )
2 (10)

1On the other hand, Tb should not bemade too small, because

that can result in insu�cient constraints for inversion and make

the inversion more ill-posed. So an optimal Tb exists, which can

be estimated heuristically or via a validation set.



Here, F (�) = NNb(�), and Os = Xb
o. We refer toE(F (W ;X)�

Os)
2 as the inversion term. By minimizing the cost (10),

we obtain the �nal estimation of Xb
i , which is the vector we

want to predict:
~X = �( ~Xf

o ;X
b
o); (11)

where �(�) is a nonlinear function (implicitly) determined by
the inversion. Thus, our regularized inverse combines the
estimates based on the forward correlation and the back-
ward correlation to obtain the �nal estimation.

Our regularized inversion is implemented via a contin-
uation method. The � in (10) is similar to the \tempera-
ture" in the deterministic annealing (DA) method [7]. At
the beginning, � is set to be large, which actually puts a
constraint on the initialization of X. Then � is gradually
decreased. For each �, (10) is minimized over X via gra-
dient descent and an estimate of X is obtained, which is
further used as the initialization for the next reduced �.
This approach can avoid some local minima and make the
inversion less sensitive to initialization. With � decreasing,
the minimization puts more and more weight on the inver-
sion term, with the regularization constraint only partially
satis�ed. The terminated � determines the weight ratio be-
tween the backward and forward correlation contributions
to the prediction. We can choose � either heuristically or by
a validation set. Here we only select � heuristically accord-
ing to the prior knowledge of the time series' noise level.
When a time series has little noise, the inversion is more
reliable. Then, with a small terminated �, the prediction
can count more on the backward correlation. When a time
series is very noisy, a larger terminated � can be chosen to
impose a greater constraint on the agreement with forward
correlation during inversion.

4. EXPERIMENTAL RESULTS

In our experiments, we used a three-layer Multilayer Per-
ceptron (MLP) architecture for time series modeling. The
activation function was chosen to be the sigmoid function in
the hidden units, and output neurons were set to be linear.

4.1. Laser series from the Santa Fe competition

The laser time series consists of readings from an 8-bit A/D
converter measuring the intensity of a far-infrared laser. It
was used in the Santa Fe competition [10]. The laser can
be approximately described by the Lorenz equations, a set
of three coupled nonlinear di�erential equations. The time
series is dynamic in origin, but with little noise. We used
the �rst 500 points as the training set and the second 500
points as the test set. The �rst 1,000 points scaled to the
interval 0 to 1 are depicted in Figure 1. We picked the task
as predicting the next Tf = 10 points. The averaged mean
square error (AMSE) was used as the cost metric. AMSE
is de�ned as

AMSE =
1

M

MX

n=1

1

Tf

TfX

i=1

(xn+i � ~xn+i)
2 (12)

Here, M is the number of multi-step predictions. We also
computed the AMSE normalized by the variance of the

source, which we refer to as NMSE. We trained a three-
layer MLP forward prediction network with (10/6/10) units
for (output/hidden/input) layers, which predicted 10 points
ahead based on the past 10 points. The AMSE of the test
set was 0.0034 (NMSE: 0.1245) for this single forward pre-
diction network. The backward prediction network was de-
signed as an MLP network with (6/6/10) units, which es-
timated the past 6 points based on 10 \future" observed
points. Because this data set is relatively clean, we chose
the terminated � as (small as) 0.01. The AMSE after the
inversion reached 0.0004 (NMSE: 0.0146), which is only
10% of the AMSE of the single forward prediction network.
Though this comparison demonstrates that incorporation
of backward correlation improves prediction accuracy sig-
ni�cantly, it is not fair in terms of complexity. In order to
compare fairly, we trained another two MLP forward pre-
diction networks. Each had the same complexity, in terms
of number of parameters to train, as the two networks to-
gether in the new approach. The �rst one had (10/12/10)
units, for which the AMSE was 0.0016 (NMSE: 0.0586).
The other one had (10/9/15) units. Thus, it accessed more
points in the past. The AMSE of this network was 0.0021
(NMSE: 0.0769). We can see that the inversion approach
still achieves large improvement over the two forward pre-
diction networks (with the same complexity). The predic-
tion error (AMSE) is shown in Figure 2.
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Figure 1: Laser series
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Figure 2: AMSE of the laser series



4.2. Sunspot Series

Sunspots were �rst observed around 1610, shortly after the
invention of the telescope. They are dark blotches on the
sun and are often larger in diameter than the earth. The
time series is the yearly averages recorded from 1700 to
1988. While the underlying mechanism for sunspot appear-
ances is not exactly known yet, it is known that the series is
dynamic and noisy. It has served as a benchmark for time
series research. Figure 3 shows the sunspot series scaled to
the interval 0 to 1.

For this time series we predicted the next 6 points in
the experiment. An MLP network with (6/4/6) units was
trained as the forward prediction network, and an MLP net-
work with (3/4/6) units was used as the backward predic-
tion network. The �rst 200 points were the training set and
the other 89 points were the test set. The AMSE of our in-
version approach was 0.0258 (NMSE: 0.601), with the single
forward prediction network's AMSE being 0.0289 (NMSE:
0.674). The terminated � was chosen to be 0.1 because of
the higher noise level. Again, two other MLP networks with
the same complexity as the overall inversion system were
trained. One of them had (6/8/6) units, and the other one
had (6/6/10) units. The AMSEs for those two networks
were 0.0379 (NMSE: 0.88) and 0.1225 (NMSE > 1.0), re-
spectively. Here, we note that the training of the latter
failed completely in terms of generalization ability. From
this dynamic and small size data set, we can see the dif-
�culty to train a (relatively) large size network, which is
supposed to learn the correlation more e�ciently, without
over�tting. The prediction error is depicted in Figure 4.
Although the improvement for this noisy series is not as
large as for the clean laser series, it is still signi�cant (more
than 10%).
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Figure 3: Sunspot series

5. CONCLUSION

For some dynamic and small size data sets, it may be dif-
�cult to train a large network to capture the correlations
between the samples. Our separate training in the posi-
tive and negative time directions is more e�ective. Each
captures some component of the correlation. Then, pre-
diction via inversion combines the forward correlation with
the backward correlation to learn more knowledge about
the correlation in a time series, so it can achieve signi�cant
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Figure 4: AMSE of the sunspot series

improvement for multi-step prediction problems. The novel
contributions of this work include use of bidirectional train-
ing and neural network inversion for time series prediction,
and a new regularization method is developed for neural
network inversion.
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