
UNFOLDING PROBABILISTIC DATA-FLOW GRAPHS UNDER DIFFERENT TIMING
MODELS

Sissades Tongsima Timothy W. O’Neil Edwin H.-M. Sha

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, Indiana 46556

ABSTRACT

It is known that in many applications, because of selection state-
ments, e.g., if-statement, the computation time of a node can be
represented by a random variable. This paper focuses on any it-
erative application (containing loops) reflecting those uncertain-
ties. Such an application can then be transformed to a probabilistic
data-flow graph. A challenging problem is to derive graph trans-
formation techniques which can produce a good schedule. This
paper introduces two timing models, the time-invariant and time-
variant models, to characterize the nature of these applications.
Furthermore, for the time-invariant model, we propose a means of
selecting a minimum rate-optimal unfolding factor which guaran-
tees the best schedule length. We also propose a good estimation
for choosing an unfolding factor for a graph under the time-variant
model.

1. INTRODUCTION

A considerable number of iterative or recursive applications con-
tain conditional statements, such as if and switch-case statements,
where a data-flow model, called adata-flow graph(DFG), can be
used to represent these applications. We can identify a conditional
statement as a node in a DFG whose timing information depends
on the probability of selecting the branches at the beginning of the
conditional statement. Since the computation time of such a node
is represented by a random variable, we call this type of node a
probabilistic node. Theprobabilistic data-flow graph(PDFG) is
introduced to model these applications.

We can further categorize the graph based upon the behavior
of its application. In this paper, we introduce two timing models
for a PDFG, atime-invariant(TI ) model and atime-variant(TV )
model, which describe how probabilities influence the node com-
putation times. The applications under the time-invariant model
are those programs whose branching decisions rely on inputs from
outside world, also called the environmental variables. For exam-
ple, the throughput of a modem may be changed during different
sessions and in a session it is determined based on the connection
quality and bandwidth. But after the connection is established, the
settings are kept the same throughout the session.

On the other hand, applications which are considered to be
under the time-variant model do not ensure the aforementioned
setup. For example, conditional statements placed in a loop de-
pend on some intermediate results produced by the program itself
or even some input from users. The examples in this category
range in many areas including artificial intelligence, fuzzy logic,

and image processing etc. We discuss the issue of timing models
and their properties in this paper.

Due to the uncertainty inherent in a PDFG which implies the
presence of more than one possible graph outcome whose tim-
ing information is non-probabilistic, optimizing the graph, i.e., in-
creasing the degree of parallelism of nodes in this graph, by tra-
ditional methods such as unfolding [5] becomes nontrivial. Since
unfolding increases the size of a resulting unfolded graph, it is ben-
eficial to keep the unfolding factor small. This paper discusses how
to select a reasonably small unfolding factor for different timing
models. How processors schedule an application for execution—
either using anintegral grid time slot in which a task has to be
scheduled at the beginning of the grid or using a grid-less (frac-
tional) model where a task can start execution anytime—differentiates
two model candidates [1]. This paper demonstrates that if we con-
sider a PDFG under the time-invariant model, a minimal unfolding
factor which minimizes the schedule length of each possible graph
outcome of the PDFG can be obtained. We also show that the tradi-
tional iteration bound is no longer a lower bound when considering
a PDFG under time-variant models. A suggestion for choosing a
decent unfolding factor for graphs under the time-variant model is
then presented.

Several scheduling techniques strive to schedule a restricted
version of the DFGs, called adirected acyclic graph(DAG) [2].
These methods do not explore the parallelism across iterations nor
do they address the problem of probabilistic tasks. As the results,
several techniques attempt to make use of the fact that the execu-
tion of tasks in different loop iterations can be done in parallel such
as loop transformations and software pipelining [3,4,7].

The remaining sections are organized as following. In Sec-
tion 2, we discuss some terminology and definitions. Section 3
then presents two timing models which influence how a PDFG will
be executed. The concept of optimal schedule length is given for
the time-invariant model in this section. We also propose how to
choose an unfolding factor which will be beneficial for a PDFG
under different timing models. Finally, Section 4 draws conclu-
sions of this work.

2. BACKGROUND

Figure 1 shows a simple data-flow graph (DFG) where a computa-
tion time of a node is represented by a number beside them, e.g.,
noden0 takes3 time-units to compute and delays are shown by
a number on some edges. In literature, the iteration bound [6] of
such a graph is defined to be the maximum time to delay ratio of



all cycles in it. By this definition, the iteration bound of this graph
can be computed by maximizing the time-to-delay ratio of both
cycles in the graph. As a result, the cycle composed of nodesn1
andn2 has a greater ratio (3) than that of any other cycle (1:5) in
G, and3 is therefore the iteration bound.

n0
3

n1
1

n2
2

2

1

Figure 1: A simple data-flow graph

When implementing a static schedule, we must consider the
timing models are architecture If each of our operations must start
at an itegral point, we say we have anintegral model. Otherwise,
an instruction can begin in a fractional point and we have afrac-
tional modelin this case. Second, under either timing model, we
can implement our schedule using one of two hardware designs,
thepipelinedor non-pipelinedarchitecture. For the pipelined ar-
chitecture, we allow a second instance of a node to begin execu-
tion even before the first instance has finished. On the other hand,
the non-pipelined architecture requires the first instance to have
completed execution before the second instance begins. In other
words, for any nodev, we must haveS(v; i) + t(v) � S(v; i+ f)

whereS(v; i) represents a starting time of nodev in ith iteration.
In this paper, we assume that our target architecture is based on the
non-pipelined implementation.

Definition 2.1. The optimal schedule length of a DFGG with re-
spect to an unfolding factorf is defined as the minimum cycle pe-
riod of all legal schedules ofG with unfolding factorf, and is
denoted bylfopt(G).

From the definition of the iteration bound, we know that if the
ratio of the cycle periodc to the unfolding factorf, also called the
iteration period, of a scheduleS equalsB(G), this schedule is a
rate-optimalschedule.

Definition 2.2. A probabilistic data-flow graph (PDFG) is a node-
weighted edge-weighted directed graphG = hV;E; d; TiwhereV
is a set of nodes,E is a set of edges,d is a function fromE to N
representing a number of delays on each edge, andT(v) is an in-
dependent random variable representing the computation time of
nodev.

Since the graph we must work with cannot be determined at
the outset of our program execution, we can view a PDFG as a
random experiment. Hence we will adopt the terminology of prob-
ability theory and define anoutcomeas the non-probabilistic data-
flow graph that results when the computation times of the nodes
in the PDFG are fixed. Thesample description spaceS is then
the set of all possible outcomes. Figure 2 illustrates a probabilistic
data-flow graph and its two possible graph outcomes,E0 andE1
where the probabilities associated with the first and second graphs
are0:2 and0:8 respectively. A probabilistic iteration bound is de-
fined as following:

Definition 2.3. The iteration bound of a PDFGG, denoted by
Bp(G), is a random variable where,

Bp(G) = max

�
T(l)

D(l)
: l 2 G is a cycle


:

Note that in a probabilistic case the summation of computation
times in each loopT(l) is a random variable. The iteration bound
for a non-probabilistic DFG is the maximum of all loop-ratios; the
iteration bound of a PDFG can be computed by the same definition.
One way to explain how it works under the probabilistic graph
model is to calculate an iteration bound of each outcomeG 0 in the
sample description space. As an example, for the graph outcome
E0 (see Figure 2)B(E0) = 3 with probability 0:2 and for graph
E1, B(E1) = 4 with probability0:8.

Let S be a sample description space andX(s) = x be a ran-
dom variable for alls 2 S. For notational purposes, we usefX =
xg to denote the functionX that maps onto a set of points inS. The
probability of these events is then represented byProb(X = x).
Without loss of generality we shall use a notationf(x0; p0); : : : ;

(xn; pn)g, or f(xi; pi)g for brevity, to represent a random variable
X and its induced probabilityProb(X = xi) = pi. As an exam-
ple, the probabilistic iteration bound from the graph in Figure 2
can be represented asBp(G) = f(3; 0:2); (4; 0:8)g.

3. TIME-INVARIANT AND TIME-VARIANT MODELS

Definition 3.1. The time-invariant (TI ) model of a PDFGG is a
model in which the computation time of each node is established
prior to beginning execution of the graph and does not change
throughout execution. In this model, an outcome ofG, calledG 0,
is predetermined from computation times of all nodesv 2 V with
a probability p =

Q
v

Prob(T(v) = x) wherex is a possible
computation time.

Having defined the optimal schedule length for any scheduling
event whose node-computation times are fixed, we now extend this
concept to realize an optimal schedule length for a probabilistic
case.

Definition 3.2. The optimal schedule length of a PDFGG with
respect to an unfolding factorf, denoted byLfopt(G), is a ran-
dom variable where, for each outcomeG 0 with probabilityp =

Prob(Lfopt(G) = lfopt(G
0)).

Under theTI model, each of the possible graph outcomes in
Figure 2 has a corresponding scheduling diagram. The optimal
schedule length for this probabilistic graph can be denoted using
our random variable notation introduced previously. For exam-
ple, the optimal schedule length for the graph in Figure 2 with
respect to an unfolding factor2 is f(3; 0:2); (4; 0:8)g. Later we
demonstrate that any PDFG under this model can have its optimal
schedule with respect to an unfolding factorf.

Definition 3.3. The time-variant (TV) model of a PDFGG is a
model in which the execution time of a node in each iteration fol-
lows the probabilistic distribution ofT(v). The execution time of
each iteration is, therefore, not predetermined.

The computation time of a probabilistic node inside the loop
is changed depending on the probability associated with the node.
If a graph under theTV model is unfolded byf (i.e., there aref
copies of nodev in one iteration), each of the copies of nodev



n0

f(5,0.2), (7,0.8)g

n1
1

n2
2

2

1

E0(0:2)
n0

5
n1

1
n2

2

2

1

E1(0:8) n0
7

n1
1

n2
2

2

1

Figure 2: An example of a probabilistic data-flow graph

may take different computation times depending on the random
variableT(v) while under theTI model, all the copies of nodev
will assume the same computation time for each graph outcome.
Furthermore, the iteration bound definition is not valid under this
model. To demonstrate this, let us consider the graph construct of
Figure 2 that we have been using but changing the timing assign-
ment of each node to those presented in Table 1. In this table, two
timing assignments are shown in columns “pattern 1” and “pattern
2” respectively. The last row of the table presents the probabilistic
iteration bound of each pattern.

pattern 1 pattern 2
T(n0) 12 4

T(n1) f(1; 0:3); (2; 0:7)g 1

T(n2) 1 f(1; 0:3); (2; 0:7)g

Bp(G) f(6:5; 0:3); (7; 0:7)g f(2:5; 0:3); (3; 0:7)g

Table 1: New timing assignments for graph in Figure 2

Assuming that an unfolding factor2 is chosen to unfold the
graph. Let us consider the scenario when pattern 1 is the timing
assignment of the graph. Due to theTV model, there will be 4
possible unfolded graph outcomes. In particular, the difference
can be classified as the change of noden1’s computation time.
For comparison purposes, we compute iteration periods—an aver-
age computation time per iteration—for each of the outcomes. For
this example, it can be done by taking the sum of computation time
of the longest path and dividing it by the unfolding factor. The av-
erage iteration period from this example is6:955 which is greater
than the average iteration bound of6:85 (refer to Definition 2.3).

Using the same input as described previously, let us consider
what happens when the graph from Figure 2 assumes the timing
of pattern 2. After examining all possible outcomes, we have its
average iteration period equal to2:745 which is smaller than its
average iteration bound (2:85). This shows that the traditional def-
inition of iteration bound is no longer the lower bound for theTV
model.

3.1. Properties for time-invariant model

Under this model constraint, we can obtain some nice properties
based on how nodes start their execution as mentioned previously
in Section 2:integral-grid andfractional-grid models. The prop-
erties on traditional DFG can be found in [1]

3.1.1. Integral-grid model

The first theorem is to show that by choosing the right unfolding
factorf, an optimal schedule under integral-grid model, while as-
suming non-pipelined hardware implementation, can be obtained.
Particularly, thisf ensures that all possible schedule outcomes,
based on such an unfolding factor, are optimal. First let us present
some concepts related to this model.

Lemma 3.1. Letc be the cycle period of a data-flow graphG and
S be a legal schedule whose cycle period and unfolding factor are
c and f respectively. A static schedule ofS can be implemented
under a non-pipelined design if and only ifc � maxv t(v).

The above lemma tell us that the conditionc � maxv t(v)
should be ensured in order to have a static schedule implementable.
Based on this lemma, we can derived a formula to compute an
optimal unfolding factor for a DFG considering the integral-grid
model.

Lemma 3.2. Let �
�

be the irreducible form of the iteration bound
of a DFGG, B(G). Under the integral-grid model, the minimum
rate-optimal unfolding factorf for creating a static schedule is

that f =
l

maxv t(v)
�

m
�.

According to these properties, we derive a formula to com-
pute an unfolding factor which can guarantee to produce optimal
schedule for each of all possible PDFG outcomes.

Theorem 3.1. Under the integral-grid model, given a PDFG (time-
invariant model)G, and probabilistic iteration boundBp(G) =
f(
�i
�i
; pi)g where�i

�i
is the irreducible form of the iteration bound

B(G 0) of the graph outcomeG 0 of the PDFG, letLfopt be the op-

timal schedule length withf = lcm8i


l
maxv t(v)

�i

m
�i

�
. Then

1
f
� Lfopt(G) = Bp(G).

Proof. Since both side of the equation1
f
� Lfopt = B(G) are ran-

dom variables, we first need to show that there exists the same
number of outcomes in the sample description spaceS for both
sides. Without loss of generality, let us assume that, for allv 2 V,
T(v) has a distribution of the countable discrete type, i.e., there is
a finite number in a sample description space.

According to Definition 3.1, we know that for a PDFGG there
exists a finite number ofG 0, sayn, each of which has its corre-
sponding probabilityp =

Q
v

Prob(T(v) = x). Furthermore,
we want to show that for any graph outcomeG 0, the equation



1
f
� lfopt(G

0) = B(G 0) is preserved. Since eachG 0 is a non-
probabilistic DFG, the iteration period is rate-optimal ifc

f
= B(G 0).

We havelfopt(G
0) = f � B(G 0) by Definition 2.1. If unfolding fac-

tor f =
l

maxv t(v)
�

m
� � is chosen, a scheduleS(G 0) will have an

optimal schedule length.

Let flcm = lcm8i


l
maxv t(v)

�i

m
�i

�
be the least common mul-

tiple of all unfolding factors computed for all outcome graphsG 0.
Usingflcm in G 0 results in having its optimal schedule length in a
form of k � lflcm

opt wherek is the constant from dividingflcm by the

minimum unfolding factorf of G 0. Now the random variableLflcm
opt

is in a formf(k0 � l0; p0); : : : ; (kn � ln; pn)g. If we multiply this
random variable with 1

flcm
, we getBp(G).

As an example, reconsider the graph in Figure 2. We know that
the irreducible form ofBp(G) is equal to

��
3
1
; 0:2

�
;
�
4
1
; 0:8

�	
.

According to Theorem 3.1, the desired unfolding factor should be

the least common multiple of

l

maxv t(v)0
�0

m
�0;

l
maxv t(v)1

�1

m
�1

�
.

Note here that the maxv t(v) of each of possible graph outcomes
are5 and7 respectively. By calculating this, we have the unfolding
factorf equal to2. Both schedules for each of the graph outcomes
should also be optimal that is the cycle period of outcome 0 will
be6 and8 for the outcome 1.

3.1.2. Fractional-grid model

In both previous results, we usedG 0 to represent a graph outcome
of the PDFG. Since we can assume that there exists a finite number
of the outcomes, a notationG 0

i denotes theith copy of the PDFG.

The following result shows that iff = lcm8i


l
maxv t(v)
B(G 0

i
)

m�
, then

the probabilistic optimal schedule length can be achieved. The
following lemma discusses how to choose an unfolding factor for
a non-probabilistic data-flow graph.

Lemma 3.3. Under a fractional-grid model, the minimum unfold-
ing factor f for creating an optimal schedule from a data-flow

graphG is thatf =
l

maxv t(v)
B(G)

m
.

Theorem 3.2. Under the fractional-grid model, given a PDFG
(time-invariant model)G, and probabilistic iteration boundBp(G)
represented byf(B(G 0

i); pi)g whereB(G 0) is the iteration bound

of a graph outcomeG 0 of the PDFG, letf = lcm8i


l
maxv t(v)
B(G 0

i
)

m�
.

Then1
f
� Lfopt = Bp(G).

Proof. As in Theorem 3.1, we know that there exists a finite num-
ber of graph outcomesG 0. From Lemma 3.3, we obtain1

f
�lfopt(G

0) =

B(G 0) wheref is chosen to be the result from ratio
l

maxv t(v)
B(G 0

i
)

m
.

Consider when selectingflcm = lcm8i


l
maxv t(v)
B(G 0

i
)

m�
. Each of

the optimal schedule lengthlopt(G
0

i) with respect to this unfold-
ing factor flcm can be presented in the following form:f(k0 �
l0; p0); : : : ; (kn � ln; pn)g whereki is a constant from dividing

flcm by its original f =
l

maxv t(v)
B(G 0

i
)

m
, li is the resulting optimal

schedule length andpi is the corresponding probability. There-
fore, the equation1

f
� Lfopt = Bp(G) is satisfied..

If the two outcomes from Figure 2 are studied, the unfolding
factor under the fractional-grid model will also be two. This is be-
cause the irreducible forms from the integral one are not fractional

numbers, i.e., their denominators are both one. In practice, the
irreducible form of an iteration bound may not be integer. Thus
the resulting unfolding factor from Theorem 3.2 which adopts the
fractional-grid model, will produce a smaller number.

3.2. Good estimation for time-variant model

Since we cannot guarantee that a given unfolding factorf will help
us derive the optimal schedule (see example of Definition 3.3), a
good estimation of the unfolding factor is preferable. There are
several criteria to decide if a givenf is good enough. The sim-
plest criteria will be the comparison of the average iteration period.
This paper suggests that using a formula presented in Lemma 3.3
to computef for each of the original PDFG outcomes and select
the maximum factor to be the candidate should give a reasonable
estimation.

4. CONCLUSION

The probabilistic data-flow graph (PDFG) model can be used to
represent an application whose computation times are associated
with some probability such as ones from conditional statements.
Two timing models, the time-invariant and time-variant models,
have been presented to differentiate the PDFGs according to the
nature of their original applications. For graphs under the time-
invariant model, we presented two theorems, one for the integral-
grid model and the other for the fractional-grid model, which tell
us what unfolding factors guarantee that the resulting static sched-
ules of the PDFG will be optimal. For graphs under time-variant
model, it has been shown that the definition of the probabilistic it-
eration bound is not a lower bound for these graphs. Therefore, we
proposed the means for estimating an unfolding factor for them.

5. ACKNOWLEDGMENT

This work is partially supported by NSF MIP95-01006, NSF MIP97-
04276 and Schmitt Scholarship.

6. REFERENCES

[1] L.-F. Chao and E. H.-M. Sha. Static scheduling for synthesis of DSP
algorithms on various models.Journal of VLSI Signal Processing,
10:207–223, 1995.

[2] A. A. Khan, C. L. McCreary, and M. S. Jones. A comparison of mul-
tiprocessor scheduling heuristics. InProceedings of the 1994 Interna-
tional Conference on Parallel Processing, volume II, pages 243–250,
1994.

[3] M. Lam. Software pipelining. InProceedings of the ACM SIG-
PLAN’88 Conference on Programming Language Design and Imple-
mentation, pages 318–328, Atlanta, GA, June 1988.

[4] W. Li and K. Pingali. A singular loop transformation framework based
on non-singular matrices. Technical Report TR 92-1294, Cornell Uni-
versity, Ithaca, NY, July 1992.

[5] K. K. Parhi and D. G. Messerschmitt. Static rate-optimal scheduling of
iterative data-flow programs via optimum unfolding. InTransactions
on Computers, volume 40, pages 178–195. IEEE, February 1991.

[6] M. Renfors and Y. Neuvo. The maximum sampling rate of digital fil-
ters under hardware speed constraints.IEEE Transactions on Circuits
and Systems, CAS-28:196–202, 1981.

[7] M. E. Wolfe. High Performance Compilers for Parallel Computing,
chapter 9. Addison-Wesley, Redwood City, CA, 1996.


