UNFOLDING PROBABILISTIC DATA-FLOW GRAPHS UNDER DIFFERENT TIMING
MODELS

Sissades Tongsima Timothy W. O’'Neil Edwin H.-M. Sha

Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, Indiana 46556

ABSTRACT and image processing etc. We discuss the issue of timing models
. . L . and their properties in this paper.
It is known that in many applications, because of selection state- Due to the uncertainty inherent in a PDFG which implies the

ments, e.g., if-statement, the_computayon time of a node can t!epresence of more than one possible graph outcome whose tim-
represented by a random variable. This paper focuses on any it-

erative application (containing loops) reflecting those uncertain- Ing information i non-probabilistic, optimizing the graph, i.e., in-

: " ... creasing the degree of parallelism of nodes in this graph, by tra-
gztsé-ﬁg\fvh arg ar? p%iﬁgﬂecr?r}r:henrste)lgr?]ng?ggee?i\tlzafg[oﬁigf’stlcditional methods such as unfolding [5] becomes nontrivial. Since

ow-graph. -nging p grap ._unfolding increases the size of a resulting unfolded graph, itis ben-
formation techniques which can produce a good schedule. This

paper introduces two timing models, the time-invariant and time- eficial to keep the unfolding factor small. This paper discusses how

variant models, to characterize the nature of these a IicationstO select a reasonably small unfolding factor for different timing
Furthermore fc;r the time-invariant model, we propose grr)neans of‘models. How processors schedule an application for execution—

; L . L Propose either using arintegral grid time slot in which a task has to be
selecting a minimum rate-optimal unfolding factor which guaran-

. .. scheduled at the beginning of the grid or using a grid-lé&se{
tees the bESt schedult_a length. We also propose a gopd es“matloﬂonal) model where a task can start execution anytime—differentiates
for choosing an unfolding factor for a graph under the time-variant

model two model candidates [1]. This paper demonstrates that if we con-
' sider a PDFG under the time-invariant model, a minimal unfolding
factor which minimizes the schedule length of each possible graph
1. INTRODUCTION outcome of the PDFG can be obtained. We also show that the tradi-
tional iteration bound is no longer a lower bound when considering
A considerable number of iterative or recursive applications con- a PDFG under time-variant models. A suggestion for choosing a
tain conditional statements, such as if and switch-case statementsgecent unfolding factor for graphs under the time-variant model is
where a data-flow model, calleddata-flow graph(DFG), can be then presented.
used to represent these applications. We can identify a conditional Several scheduling techniques strive to schedule a restricted
statement as a node in a DFG whose timing information dependS\/ersion of the DFGs, called directed acyc”c grapf(DAG) [2]
on the probability of selecting the branches at the beginning of the These methods do not explore the parallelism across iterations nor
conditional statement. Since the computation time of such a nodedo they address the problem of probabilistic tasks. As the results,
is represented by a random variable, we call this type of node aseveral techniques attempt to make use of the fact that the execu-
probabilistic node. Th@robabilistic data-flow grap{PDFG) is tion of tasks in different loop iterations can be done in parallel such
introduced to model these applications. as loop transformations and software pipelining [3, 4, 7].
We can further categorize the graph based upon the behavior The remaining sections are organized as following. In Sec-
of its application. In this paper, we introduce two timing models tjon 2, we discuss some terminology and definitions. Section 3
for a PDFG, dime-invariant(Tl) model and d@ime-variant(TV) then presents two timing models which influence how a PDFG wiill
mOdel, which describe how probabilities influence the node com- be executed. The Concept of Opt|ma| schedule |ength is given for
putation times. The applications under the time-invariant model the time-invariant model in this section. We also propose how to

are those programs whose branching decisions rely on inputs fromehoose an unfolding factor which will be beneficial for a PDFG
outside world, also called the environmental variables. For exam-ynder different timing models. Finally, Section 4 draws conclu-

ple, the throughput of a modem may be changed during different sjons of this work.
sessions and in a session it is determined based on the connection
quality and bandwidth. But after the connection is established, the
settings are kept the same throughout the session. 2. BACKGROUND

On the other hand, applications which are considered to be
under the time-variant model do not ensure the aforementionedFigure 1 shows a simple data-flow graph (DFG) where a computa-
setup. For example, conditional statements placed in a loop de-tion time of a node is represented by a number beside them, e.g.,
pend on some intermediate results produced by the program itselinoden, takes3 time-units to compute and delays are shown by
or even some input from users. The examples in this categorya number on some edges. In literature, the iteration bound [6] of
range in many areas including artificial intelligence, fuzzy logic, such a graph is defined to be the maximum time to delay ratio of

all cycles in it. By this definition, the iteration bound of this graph Definition 2.3. The iteration bound of a PDFGs, denoted by
can be computed by maximizing the time-to-delay ratio of both B, (G), is a random variable where,

cycles in the graph. As a result, the cycle composed of nades

andn; has a greater ratid) than that of any other cycld 5) in B,(G) = max{ T()

¢ ! " ——:le Gisacycle .
G, and3 is therefore the iteration bound. D(1) Y }

Note that in a probabilistic case the summation of computation

1 times in each loof (1) is a random variable. The iteration bound
3 1 2 for a non-probabilistic DFG is the maximum of all loop-ratios; the
@ ™ n2 iteration bound of a PDFG can be computed by the same definition.
K j One way to explain how it works under the probabilistic graph
2 model is to calculate an iteration bound of each outc@hén the

sample description space. As an example, for the graph outcome

Figure 1: A simple data-flow graph Eo (see Figure 2B(Eo) = 3 with probability 0.2 and for graph
Eq, B(E1) = 4 with probability 0.8.

Let G be a sample description space atd) = x be a ran-
dom variable for als € &. For notational purposes, we ugé =
x} to denote the functioX that maps onto a set of points@ The
probability of these events is then representedPbyb(X = x).
Without loss of generality we shall use a notat{¢ro, po), ... ,
(xn,Pn)}, Or{(xi,pi)} for brevity, to represent a random variable
X and its induced probabilitiProb(X = x;) = pi. As an exam-

When implementing a static schedule, we must consider the
timing models are architecture If each of our operations must start
at an itegral point, we say we have iamtegral model Otherwise,
an instruction can begin in a fractional point and we havee
tional modelin this case. Second, under either timing model, we
can implement our schedule using one of two hardware des'gns’ple, the probabilistic iteration bound from the graph in Figure 2

the_ pipelinedor non-pipelinedar;hitecture. For the pipelin_ed ar .anpe represented Bs (G) = {(3,0.2), (4,0.8)}.
chitecture, we allow a second instance of a node to begin execu-
tion even before the first instance has finished. On the other hand,

the non-pipelined architecture requires the first instance to have 3. TIME-INVARIANT AND TIME-VARIANT MODELS

completed execution before the second instance begins. In other . L. . .
words, for any node, we must haves (v, i) + t(v) < S(v,i + f) Definition 3.1. The time-invariantTl) model of a PDFGG is a
whereS(v, 1) represents a starting time of nodéan i iteration. model in which the computation time of each node is established

In this paper, we assume that our target architecture is based on thMr 1 beginning execution of the graph and does not c,hange
non-pipelined implementation. _throughout e_xecutlon. In this mo_del,_an outcomGobaIIedG_ ,

is predetermined from computation times of all nodes V with

a probability p = [T, Prob(T(v) = x) wherex is a possible

Definition 2.1. The optimal schedule length of a DR&Gwith re- Lo
computation time.

spect to an unfolding factofris defined as the minimum cycle pe-
riod of all legal schedules o6 with unfolding factorf, and is

; Having defined the optimal schedule length for any scheduling
denoted byton(G).

event whose node-computation times are fixed, we now extend this
concept to realize an optimal schedule length for a probabilistic

From the definition of the iteration bound, we know thatifthe 55e.

ratio of the cycle period to the unfolding factof, also called the

iteration period of a schedule&S equalsB(G), this schedule isa Definition 3.2. The optimal schedule length of a PDFG with

rate-optimalschedule. respect to an unfolding factof, denoted byLépt(G), is a ran-
dom variable where, for each outcon® with probabilityp =

Definition 2.2. A probabilistic data-flow graph (PDFG)isanode- Prob(Liu(G) = Lix(G')).

weighted edge-weighted directed graph= (V,E, d, T) whereV

is a set of nodest is a set of edges] is a function fromE to N _ Under theTl model, each of the possible graph outcomes in

representing a number of delays on each edge, Bhd is an in- Figure 2 has a corresponding scheduling diagram. The optimal
dependent random variable representing the computation time ofSchedule length for this probabilistic graph can be denoted using
nodev. our random variable notation introduced previously. For exam-

ple, the optimal schedule length for the graph in Figure 2 with
Since the graph we must work with cannot be determined at '€SPect to an unfolding factar is {(3,0.2), (4,0.8). Later we
the outset of our program execution, we can view a PDFG as gdemonstrate that any PDFG under this model can have its optimal
random experiment. Hence we will adopt the terminology of prob- Schedule with respect to an unfolding facfor

ability theory and define anutcomeas the non-probabilistic data- Hfinition 3.3. The time-variant TV) model of a PDFGG is a
flow graph that results when the computation times of the nodes e in which the execution time of a node in each iteration fol-

'2 the P?Flcls are _fl|)>|<ed. Thsamplls descglplltlon spadb is tgeg_l. ._lows the probabilistic distribution of (v). The execution time of
the set of all possible outcomes. Figure 2 illustrates a probabilistic 5, iteration is, therefore, not predetermined.

data-flow graph and its two possible graph outcontgsandE,
where the probabilities associated with the first and second graphs The computation time of a probabilistic node inside the loop
are0.2 and0.8 respectively. A probabilistic iteration bound is de- s changed depending on the probability associated with the node.
fined as following: If a graph under th@V model is unfolded byf (i.e., there aref
copies of nodev in one iteration), each of the copies of node

Eq1(0.
{(5,0.2), (7,0.8)

S
7

Mo

o(0.

Figure 2: An example of a pr

may take different computation times depending on the random
variableT (v) while under theTl model, all the copies of node

will assume the same computation time for each graph outcome.
Furthermore, the iteration bound definition is not valid under this
model. To demonstrate this, let us consider the graph construct o
Figure 2 that we have been using but changing the timing assign-
ment of each node to those presented in Table 1. In this table, two
timing assignments are shown in columns “pattern 1” and “pattern
2" respectively. The last row of the table presents the probabilistic
iteration bound of each pattern.

pattern 1 pattern 2
T(no) 12 4
T(ng) | {(1,0.3),(2,0.7)} 1
T(ny) 1 {(1,0.3), (2, 07)}
[Bo(G)] {(6.5,0.3),(7,0.7)} | {(2.5,0.3),(3,0.7)} |

Table 1: New timing assignments for graph in Figure 2

Assuming that an unfolding facta is chosen to unfold the
graph. Let us consider the scenario when pattern 1 is the timing
assignment of the graph. Due to th® model, there will be 4
possible unfolded graph outcomes. In particular, the difference
can be classified as the change of nedés computation time.

/
K*f

7 2

Pe

8)

D
©

2)

=

Q9
o

Q-

3.1.1. Integral-grid model

The first theorem is to show that by choosing the right unfolding
factor f, an optimal schedule under integral-grid model, while as-

fsumlng non-pipelined hardware implementation, can be obtained.

Particularly, thisf ensures that all possible schedule outcomes,
based on such an unfolding factor, are optimal. First let us present
some concepts related to this model.

Lemma 3.1. Letc be the cycle period of a data-flow graghand

S be a legal schedule whose cycle period and unfolding factor are
c and f respectively. A static schedule $fcan be implemented
under a non-pipelined design if and onlyif> max, t(v).

The above lemma tell us that the condition> max, t(v)
should be ensured in order to have a static schedule implementable.
Based on this lemma, we can derived a formula to compute an
optimal unfolding factor for a DFG considering the integral-grid
model.

Lemma 3.2. Let% be the irreducible form of the iteration bound
of a DFG G, B(G). Under the integral-grid model, the minimum
rate-optimal unfolding factorf for creating a static schedule is

thatf = ["2 e1] o,

According to these properties, we derive a formula to com-

For comparison purposes, we compute iteration periods—an averPute an unfolding factor which can guarantee to produce optimal

age computation time per iteration—for each of the outcomes. For
this example, it can be done by taking the sum of computation time
of the longest path and dividing it by the unfolding factor. The av-
erage iteration period from this examplesi€55 which is greater
than the average iteration bound@85 (refer to Definition 2.3).
Using the same input as described previously, let us consider

what happens when the graph from Figure 2 assumes the timingtimal schedule length withi =

of pattern 2. After examining all possible outcomes, we have its
average iteration period equal 20745 which is smaller than its
average iteration boun@.85). This shows that the traditional def-
inition of iteration bound is no longer the lower bound for é
model.

3.1. Properties for time-invariant model

Under this model constraint, we can obtain some nice properties

schedule for each of all possible PDFG outcomes.

Theorem 3.1. Under the integral-grid model, given a PDFG (time-
invariant modeI)G and probabilistic iteration bound®, (G) =
{(‘; ,Pi)} where L is the irreducible form of the iteration bound

B(G') of the graph outcom&’ of the PDFG, IetLOpt be the op-

Icmy: { [%ﬂv’] pi}. Then
1

I—opt(G) :BD[G)-

Proof. Since both side of the equatich- Ly = B(G) are ran-
dom variables, we first need to show that there exists the same
number of outcomes in the sample description sg&der both
sides. Without loss of generality, let us assume that, for alV/,
T(v) has a distribution of the countable discrete type, i.e., there is
a finite number in a sample description space.

According to Definition 3.1, we know that for a PDR&there

based on how nodes start their execution as mentioned previouslyexists a finite number o&’, sayn, each of which has its corre-

in Section 2:integral-grid andfractional-grid models. The prop-
erties on traditional DFG can be found in [1]

sponding probabilityp = T, Prob(T(v) = x). Furthermore,
we want to show that for any graph outcor@é, the equation

1 Ux(G’) = B(G') is preserved. Since eadd’ is a non-
probabilistic DFG, the iteration period is rate-optima}if= B(G').
We havelgpt(G’) = f - B(G') by Definition 2.1. If unfolding fac-
torf = | ™tV] . s chosen, a schedul{G’) will have an
optimal schedule length.

Let fiem = lcmys { [%‘M] pi} be the least common mul-
tiple of all unfolding factors computed for all outcome grag's
Usingfiem in G’ results in having its optimal schedule length in a
form of k - 1;',;m wherek is the constant from dividingicm by the
minimum unfolding factorf of G’. Now the random variablbg',;m
isinaform{(ko - lo,po),---,(kn - ln,pn)} If we multiply this
random variable Withﬂlg, we getB, (G). a

As an example, reconsider the graph in Figure 2. We know that
the irreducible form oB,, (G) is equal to{(2,0.2) , (1,0.8) }.
According to Theorem 3.1, the desired unfolding factor should be

numbers, i.e., their denominators are both one. In practice, the
irreducible form of an iteration bound may not be integer. Thus
the resulting unfolding factor from Theorem 3.2 which adopts the
fractional-grid model, will produce a smaller number.

3.2. Good estimation for time-variant model

Since we cannot guarantee that a given unfolding fafctat help

us derive the optimal schedule (see example of Definition 3.3), a
good estimation of the unfolding factor is preferable. There are
several criteria to decide if a givehis good enough. The sim-
plest criteria will be the comparison of the average iteration period.
This paper suggests that using a formula presented in Lemma 3.3
to computef for each of the original PDFG outcomes and select
the maximum factor to be the candidate should give a reasonable
estimation.

4. CONCLUSION

the least common multiple e[f[ma"“ t[“"’] Po, [max“ vy] P }

oo (o8]
Note here that the max(v) of each of possible graph outcomes The probabilistic data-flow graph (PDFG) model can be used to
are5 and7 respectively. By calculating this, we have the unfolding represent an application whose computation times are associated
factorf equal to2. Both schedules for each of the graph outcomes with some probability such as ones from conditional statements.
should also be optimal that is the cycle period of outcome 0 will Two timing models, the time-invariant and time-variant models,

be6 and8 for the outcome 1.

3.1.2. Fractional-grid model

In both previous results, we us€ to represent a graph outcome

have been presented to differentiate the PDFGs according to the
nature of their original applications. For graphs under the time-
invariant model, we presented two theorems, one for the integral-
grid model and the other for the fractional-grid model, which tell
us what unfolding factors guarantee that the resulting static sched-

of the PDFG. Since we can assume that there exists a finite numbeules of the PDFG will be optimal. For graphs under time-variant

of the outcomes, a notatio®; denotes thé" copy of the PDFG.

The following result shows that ff = lcmy; %Gt,()”-l } then
the probabilistic optimal schedule length can be achieved. Th
following lemma discusses how to choose an unfolding factor for

a non-probabilistic data-flow graph.

Lemma 3.3. Under a fractional-grid model, the minimum unfold-
ing factor f for creating an optimal schedule from a data-flow

graphG is thatf = [max_ttv)]

B(G)
Theorem 3.2. Under the fractional-grid model, given a PDFG
(time-invariant model}s, and probabilistic iteration bound,, (G)
represented by(B(G/),pi)} whereB(G') is the iteration bound

of a graph outcom& '’ of the PDFG, lef = lcmy; { [ma"“ t[“)] }

B(G])

Thent - Liw =By (G).

Proof. Asin Theorem 3.1, we know that there exists a finite num-
ber of graph outcomeS'. From Lemma 3.3, we obtaih lo(G') =
B(G') wheref is chosen to be the result from rat[éw].

B(G])
max, t(

B(G]]} Each of

the optimal schedule lengtlap(G;) with respect to this unfold-
ing factor ficm can be presented in the following formi{ko -
lo,Po),---,(kn - ln,pn)} wherek; is a constant from dividing

fiem by its original f = [mgx(ct,()”’-l 1; is the resulting optimal
schedule length ang; is the cbrresponding probability. There-

fore, the equatioﬂF . Lépt = B, (G) is satisfied.. a

Consider when selectinfem = Icmy; { [)“’

If the two outcomes from Figure 2 are studied, the unfolding
factor under the fractional-grid model will also be two. This is be-
cause the irreducible forms from the integral one are not fractional

model, it has been shown that the definition of the probabilistic it-
eration bound is not a lower bound for these graphs. Therefore, we

e proposed the means for estimating an unfolding factor for them.

5. ACKNOWLEDGMENT

This work is partially supported by NSF MIP95-01006, NSF MIP97-
04276 and Schmitt Scholarship.

6. REFERENCES

[1] L.-F. Chao and E. H.-M. Sha. Static scheduling for synthesis of DSP
algorithms on various modelsJournal of VLSI Signal Processing
10:207-223, 1995.

[2] A. A.Khan, C. L. McCreary, and M. S. Jones. A comparison of mul-
tiprocessor scheduling heuristics. Proceedings of the 1994 Interna-
tional Conference on Parallel Processingplume I, pages 243-250,
1994.

M. Lam. Software pipelining. InProceedings of the ACM SIG-
PLAN'88 Conference on Programming Language Design and Imple-
mentation pages 318-328, Atlanta, GA, June 1988.

[4] W.Liand K. Pingali. A singular loop transformation framework based
on non-singular matrices. Technical Report TR 92-1294, Cornell Uni-
versity, Ithaca, NY, July 1992.

K. K. Parhi and D. G. Messerschmitt. Static rate-optimal scheduling of
iterative data-flow programs via optimum unfolding. Transactions
on Computersvolume 40, pages 178-195. IEEE, February 1991.

M. Renfors and Y. Neuvo. The maximum sampling rate of digital fil-
ters under hardware speed constraiffEE Transactions on Circuits
and System<CAS-28:196-202, 1981.

M. E. Wolfe. High Performance Compilers for Parallel Computing
chapter 9. Addison-Wesley, Redwood City, CA, 1996.

(3]

(5]

(6]

(7]

