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ABSTRACT

In this paper, we propose a new approach to wavelet-based de-
convolution. Roughly speaking, the algorithm comprises Fourier-
domain system inversion followed by wavelet-domain noise sup-
pression. Our approach subsumes a number of other wavelet-based
deconvolution methods. In contrast to other wavelet-based ap-
proaches, however, we employ a regularized inverse filter, which
allows the algorithm to operate even when the inverse system is ill-
conditioned or non-invertible. Using a mean-square-error metric,
we strike an optimal balance between Fourier-domain and wavelet-
domain regularization. The result is a fast deconvolution algorithm
ideally suited to signals and images with edges and other singu-
larities. In simulations with real data, the algorithm outperforms
the LTI Wiener filter and other wavelet-based deconvolution algo-
rithms in terms of both visual quality and MSE performance.

1. INTRODUCTION

Deconvolution is a recurring theme in a wide variety of signal and
image processing problems, from channel equalization [1] to im-
age restoration [2]. Often, the distortion introduced by a measure-
ment device can be modeled as a convolution of the desired data
with the impulse response of the device. Deconvolution, then, cor-
responds to inverting the effects of the distortions. Unfortunately,
the measured signal is usually also corrupted by noise, which com-
plicates the process of deconvolution.

In its simplest form, the 1-d deconvolution problem runs as
follows. The desired signalx is input to a known linear time-
invariant (LTI) system having impulse responseh. White Gaus-
sian noisen of variance�2 corrupts the output of the system. We
measure the resulty(t) := (h � x)(t) + n(t). In the Fourier do-
main, we haveY (f) = H(f)X(f) +N(f). Giveny, we seek to
estimatex.

If the system frequency responseH(f) has no zeros,
then we can obtain an unbiased estimate ofx as bX(f) :=
H�1(f)Y (f) = X(f) +H�1(f)N(f). However, ifH(f) be-
comes small at any frequency, then enormous noise amplification
results, yielding an infinite-variance, useless estimate.

In situations involving such ill-posed systems, some amount of
regularizationbecomes essential. Regularization reduces the vari-
ance of the signal estimate (noise reduction) in exchange for an in-
crease in bias (signal distortion). Whenx is wide-sense stationary
(WSS), the LTIWiener filterprovides the optimal regularization in
the minimum mean-squared-error (MSE) sense [2].

Unfortunately, the signals and images appearing in many im-
portant applications contain information-bearing edges and ridges.
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The LTI Wiener filter is inappropriate for such non-stationary sig-
nals, for since it reduces noise by smoothing all signal components
uniformly, it can smear local features such as edges. The root of
this problem lies in the fact that while the underlying Fourier basis
of the LTI Wiener filter matches an LTI systemh, it does not match
a non-stationary signalx.

Wavelets, on the other hand, provide a basis matched to a
large class of non-stationary signals [3, 4]. Unlike the strict fre-
quency localization of the Fourier basis, a wavelet basis localizes
in both timeand frequency, and so can effectively track signal
non-stationarities. This matching property has been leveraged into
powerful algorithms for noise reduction that simply threshold the
wavelet representation of the noisy signal [5, 6]. Wavelet denois-
ing is a spatially adaptive processing (it smoothes more in smooth
regions of the signal) ideally suited to signals with edges and other
singularities.

The fact that LTI systems are matched by one basis (Fourier)
but non-stationary signals by another (wavelet) inspires a hybrid
approach to deconvolution: (i) invert the convolution operation in
the Fourier domain and then (ii) regularize (denoise) in the wavelet
domain. Such an approach has been followed by Donoho [7],
Nowak [8], and Mallat [3, pp. 456-461] with considerable success.

However, current wavelet-based deconvolution schemes can-
not deal with ill-conditioned systemsh, since they entrust all of
the regularization to their wavelet denoising post-processing step.
Systems with a transfer function zero will present noise of infinite
variance to the denoising step, destroying the signal estimate.

In this paper, we propose an improved hybrid Fourier/wavelet
deconvolution algorithm suitable for use with ill-conditioned sys-
tems. The basic idea is simple: employboth Fourier-domain
(Wiener-like) and wavelet-domain regularization. With this tan-
dem processing, we can keep the Fourier-domain regularization
(and its corresponding smearing distortions) to the minimum re-
quired to make the system transfer function well-posed; the bulk
of the noise removal comes in the wavelet denoising stage. Using
the MSE metric, we will strike an optimal balance between global
and local processing. Interestingly, one extreme of the balance is
to perform no Fourier-domain regularization, and this coincides to
the approaches of [3,7,8]. Extension to multi-dimensional data is
trivial.

After discussing regularization in more depth in Section 2 and
previous Fourier/wavelet deconvolution approaches in Section 3,
we present our improved scheme in Section 4. Illustrative exam-
ples lie in Section 5. We close with conclusions in Section 6.

2. REGULARIZED INVERSE FILTERS

Consider a zero-mean, WSS signalx with power spectral density
(PSD)Px(f). Given the general deconvolution problem from the
Introduction, a general form for a Fourier-domain-regularized sig-



nal estimate is given by [9]

bX�(f) := G�(f)Y (f) (1)

with

G�(f) :=

�
1

H(f)

��
jH(f)j2 Px(f)

jH(f)j2 Px(f) + ��2

�
: (2)

The regularization parameter� controls the tradeoff between the
amount of noise suppression and the amount of signal distortion.
Setting� = 0 gives an unbiased but noisy estimate. Setting� =
1 completely suppresses the noise, but also totally distorts the
signal (bx1 = 0). For� = 1, (2) corresponds to the LTI Wiener
filter, which is optimal in the MSE sense for Gaussianx.

Since the Fourier basis functions underlying any LTI filter
have spatial support over the entire signal,G� will tend to smear
non-stationarities in the desired signal, such as edges and ridges.
While for non-stationary signals we could just solve the more gen-
eral MSE signal estimation problem (time-varying Wiener filter-
ing), such an approach would have no special structure and further-
more would require precise knowledge of the non-stationarities in
x.

3. WAVELETS AND DECONVOLUTION

The joint time-frequency analysis of the wavelet basis efficiently
captures non-stationary signal features. The discrete wavelet trans-
form (DWT) represents a 1-d signalz in terms of shifted versions
of a low-pass scaling function� and shifted and dilated versions
of a prototype bandpass wavelet function [3, 4]. For special
choices of� and , the functions j;k(t) := 2�j=2  

�
2�jt� k

�
,

�j;k(t) := 2�j �
�
2�jt� k

�
, j; k 2 ZZ form an orthonormal ba-

sis, and we have the representation [3,4]

z(t) =
X
k

uj0;k �j0;k(t) +

j0X
j=�1

X
k

wj;k  j;k(t); (3)

with uj;k :=
R
z(t)��j;k(t) dt andwj;k :=

R
z(t) �j;k(t)dt. For

brevity, we will collectively refer to the set of scaling and wavelet
coefficients asf�j;kg := fuj0;k; wj;kg. Multidimensional DWTs
are easily obtained by alternately wavelet-transforming along each
dimension [3,4].

The DWT enjoys an enviable energy compaction property: the
energy of many real-world signals compacts into just a few large
wavelet coefficients, while white noise remains disbursed over a
large number of small coefficients. This disparity can be exploited
to distinguish signal from noise and has given rise to a number of
powerful denoising techniques based on simple thresholding [4–
6] that can suppress noise while preserving time-localized signal
structures.

Wavelet denoising figures prominently in a number of recent
advanced deconvolution algorithms [3, 7, 8]. All three methods
have the same two basic steps in common:

Inversion: Compute the noisy estimatebX0 = H�1(f)Y (f).
This inversion necessarily amplifies noise components at
frequencies whereH(f) is small.

Regularization by Wavelet Denoising: Compute the DWT ofbx0, and then threshold and invert the DWT to obtain the
final signal estimateex. Note that the Inversion step colors
the white corrupting noisen; hence scale-dependent thresh-
olds [6] should be employed.
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Figure 1:Wavelet-based regularized deconvolution (WaRD): par-
tially regularized inverse filtering following by wavelet denoising.

4. IMPROVED WAVELET-BASED DECONVOLUTION
WITH REGULARIZED INVERSE

The current Fourier/wavelet deconvolution approaches of [3, 7, 8]
completely decouple the inversion and regularization processes.
Unfortunately, when the systemh is very ill-conditioned (or sim-
ply non-invertible), any attempt at inversion will amplify the cor-
rupting noise to an extent that it will obliterate the desired signal.
No amount of wavelet denoising can rescue us in this case.

Note, however, the sensitivity of the inversion process to regu-
larization. A minute amount of regularization (small� in (2)) can
lead to a huge reduction in the degree of noise amplification - all
this at the expense of only a slight increase in the signal distortion.
This realization motivates us to replace the Inversion step of the al-
gorithms of [3, 7, 8] with aRegularizedInversion step (see Figure
1).1 We call the resulting algorithmwavelet-domain regularized
deconvolution(WaRD).

But how to pick the right value for the regularization param-
eter�? The tradeoff is clear: On one hand, since regularization
smears non-stationary signal features like edges and ridges, we
would prefer� as small as possible. On the other hand, large�

prevents excessive noise amplification during inversion which aids
the wavelet denoising.

To be more precise, we will determine theoptimal regular-
ization parameter for the WaRD system by minimizing the over-
all MSE. The deconvolution MSE consists of the signal distortion
due to Fourier-domain regularization and the error due to wavelet-
domain denoising:

MSE(�) =

Z
[1�G�(f)H(f)]2 Px(f) df

+
X
j;k

min
�
j�j;k(bx�)j2; �2j (�)� : (4)

Here �j;k(bx�) denotes the wavelet coefficients ofbx�, �2j (�) is
the variance of the wavelet-domain noise at scalej, andPx(f) =
jX(f)j2.

The first term inMSE(�) is an estimate of the distortion in
the input signal due to the regularized Fourier-domain inverse [9].
This distortion is an increasing function of�. The second term is
an estimate of the error due to ideal wavelet domain hard thresh-
olding [5]. Ideal thresholding consists of keeping a noisy wavelet
coefficient only if the signal power in that coefficient is greater
than the noise power. Otherwise, the coefficient is set to zero.
(Ideal thresholding assumes that the signals under consideration
are known.) This error is a decreasing function of�. The optimal
regularization parameter, denoted by�?, corresponds to the min-
imum ofMSE(�). Since MSE(�) is convex,�? is unique. Note
that�? depends on the signal, system, and noise power.

The existing Fourier/wavelet deconvolution algorithms of [3,
7, 8] can be interpreted as special cases of WaRD with� = 0.

1Note that the Fourier-domain-regularized inverse (2) was derived for
WSS signalsx only. With non-stationaryx, we replacePx by the time-
averaged spectrum ofx. In practice, we setPx(f) = jX(f)j2.



However, as mentioned earlier, these methods are in general not
applicable whenh is not invertible. Even whenh is invertible,
WaRD will outperform these methods, since the value� = 0 is
included in the search-space for the optimal�?.

The computational cost of deconvolving anM -point signal
will be dominated by theO(M logM) cost of the FFT inverse-
filter implementation. The second, wavelet denoising step con-
sumes onlyO(M) computations.

The wavelet denoising step of the WaRD algorithm can be ex-
tended in several ways. First, since the standard DWT is not shift-
invariant, shifts ofy will result in different estimatesex. Employing
a redundant, shift-invariant DWT will both yield a shift-invariant
algorithm as well as improve the denoising performance substan-
tially [4], all at no significant increase in the overall computational
cost. The recently proposed complex and “almost shift-invariant”
DWT of [10] would yield similar results at a reduced computa-
tional cost. Finally, instead of a threshold, we can apply a Wiener
filter to the waveletcoefficients [11, 12].2 Such processing has
been shown to outperform simple thresholding for denoising finite
samples of data.

Finally, note that WaRD extends trivially to higher dimensions
using the appropriate Fourier and wavelet transforms.

5. EXAMPLES

To illustrate the performance of the WaRD algorithm, we will per-
form simulations in 1-d and 2-d.

We first compare the WaRD with other methods for the 1-d
deconvolution problem presented in the Introduction. In order to
observe the behavior of each method for both smooth and edgy
regions, we take forx a concatenation of Donoho’sBlocksand
Heavisinesignals [13] (normalized to be zero mean and unit en-
ergy). We employ Daubechies length-8 wavelets throughout. Fig-
ure 2(a) depicts the signal. For the system, we take the example
of [3, pp. 459]

H(f) =

�
1; jf j 2 [0; 0:25]
2� 4 jf j; jf j 2 (0:25; 0:5]

(5)

with frequencyf normalized to(�0:5; 0:5] (see Figure 2(b)). The
corrupting noise variance was�2 = 4 � 10�6. Figure 2(c) plots
the blurred, noisy signal.

The Wiener filter estimate (Figure 2(d)) was implemented us-
ing� = 1 andPx(f) = jX(f)j2 in (2). The Wiener filter bases its
deconvolution on the signal-to-noise ratio at each frequency. How-
ever, this is inappropriate for non-stationary signals, since their
frequency content changes with time. The deconvolution suffers
in response.

The methods of [7, 8] fail in this case, due to the null in the
frequency response of the system atH(0:5) = 0.

Since H(f) decays to zero atf = 0:5 so slowly, the
wavelet packet deconvolution methodof [3, pp. 458–461] remains
applicable.3 This method adapts a wavelet packet basis to the col-
ored noise in the inverted databX(f) = H�1(f)Y (f). The fre-
quency splits of the wavelet packet basis forH are shown with

2Do not confuse wavelet-domain Wiener filtering with the Fourier-
domain Wiener filtering discussed above.

3Even thoughH(f) is not invertible, the wavelet packet deconvolution
method does not fail, because the location and the order of the zero of
H are such that only a few, high-frequency signal wavelet coefficients are
obliterated by the infinite noise amplification atf = 0:5. This method will
fail whenH(f) has zeros of arbitrary location and order, however.

dashed lines in Figure 2(b). The denoising step was implemented
by hard-thresholding the coefficients of a shift-invariant DWT us-
ing the best wavelet packet basis. This algorithm outperforms the
methods of [7,8] typically, as well as the standard Wiener filter in
this case (see Figure 2(e)).

Figure 2(f) plots the WaRD obtained using�? = 0:06.
Wavelet-domain Wiener filtering was applied to the coefficients
of a shift-invariant DWT for the denoising stage. The WaRD out-
performs the other algorithms in terms of both visual quality and
MSE performance.

Next, we consider image restoration using WaRD (ReWaRD).
The inputx is the256�256 Lena image (normalized to zero mean
and unit energy) and the discrete-time system responseh is a 2-d,
4-point smoother[1 1 1 1]T [1 1 1 1]. Such a response is
commonly used as a model for blurring due to a square scanning
aperture such as in a CCD camera [2]. The noise variance was
set to�2 = 4 � 10�7. Figure 3 illustrates the desiredx, the ob-
servedy, the Wiener filter estimatebx1, and the WaRD estimate for
�? = 0:27. The methods of [3,7,8] are not applicable in this situ-
ation, due to the many zeros inH(fx; fy). (The Wiener filter out-
performed the wavelet packet method in this case.) WaRD clearly
outperforms Wiener filtering in both visual quality and MSE.

6. CONCLUSIONS

In this paper, we have proposed an efficient multi-scale deconvo-
lution algorithm that optimally combines Fourier-domain regular-
ized inversion and wavelet-domain denoising. For non-stationary
signals, the WaRD outperforms the LTI Wiener filter and other
wavelet-based deconvolution algorithms in terms of both visual
quality and MSE performance. Furthermore, it continues to pro-
vide a good estimate of the original signal even when the system
response is ill-conditioned. All of this in an algorithm of compu-
tational complexity no greater than an FFT.

For a given problem setup, the optimal value of the regular-
ization parameter� depends on the signal, the system response,
and the noise level. Fortunately, final performance was observed
to be quite insensitive to the exact value, as long as we choose al-
pha sufficiently positive. As a guide, in simulations spanning many
real-world images and convolution systems,�? was almost always
lay in the range[0:2; 0:3]. In the 1-d example above, the optimal
� turned out to be small (�? = 0:06) because the test signal com-
pacted very well in the wavelet domain. However, choosing a�?

in the range[0:2; 0:3] gave near-optimal results.
There are several avenues for future WaRD related research.

We are developing methods to estimate the WaRD MSE, and thus
the optimal�?, without prior knowledge of the signal and noise
power. Further, we are investigating the gains possible using a
“best basis” adapted to thesignal instead of the noise as suggested
in [3, pp. 458–461].
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