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ABSTRACT

The sinusoidal transform (ST) provides a sparse rep-
resentation for speech signals by utilizing several psy-
choacoustic phenomena. It is well suited to applica-
tions in signal enhancement because the signal is rep-
resented in a parametric manner that is easy to ma-
nipulate. The multi{resolution sinusoidal transform
(MRST) has the additional advantage that it is both
particularly well suited to typical speech signals and
well matched to the human auditory system [1]. The
currently reported work discusses the removal of noise
from a noisy signal by applying an adaptive Wiener �l-
ter to the MRST parameters and then conditioning the
parameters to eliminate \musical noise." In informal
tests MRST based noise reduction was found to reduce
background noise signi�cantly better than traditional
Wiener �ltering and to virtually eliminate the \musical
noise" often associated with Wiener �ltering.

1. INTRODUCTION

Speech enhancement by noise removal has received
much attention lately because of its application to new,
or newly popular, technologies such as hands free tele-
phony. Traditional methods for the removal of sta-
tionary noise include spectral subtraction and Wiener
�ltering. The methods are popular because they are
fairly straightforward to implement, simple, and e�ec-
tive at removing background noise. However, they tend
to introduce a distortion, often called \musical noise,"1

that is often more annoying than the noise that they
remove.

Many modi�ed forms of spectral subtraction and
Wiener �ltering have been suggested which address
the \musical noise" problem. These include percep-
tual based techniques, which attempt to place noise

1Musical noise is so termed because it consists of short tones

at random frequencies.

below the threshold of audibility [2]; smoothing tech-
niques, which represent the spectral subtraction pro-
cess or Wiener �ltering as a time{varying �lter which
is smoothed both in time and frequency [3]; and meth-
ods which attempt to �nd optimal spectral subtraction
parameters [4, 5].

This work utilizes the multi-resolution sinusoidal
transform (MRST) to obtain signal parameters which
are then processed using a modi�ed Wiener �lter algo-
rithm. The resulting parameters are then conditioned
to remove any remaining \musical noise" artifacts. The
MRST was chosen because it is a perceptually moti-
vated transform and it yields a parametric representa-
tion of an audio signal that is easily modi�ed [1].

2. MRST BACKGROUND

The sinusoidal transform, originally developed by
Quatieri and McAulay, represents a signal as a sum
of discrete time{varying sinusoids

x(t) =

N(t)X
k=0

Ak(t) cos(�k(t)) (1)

where �k(t) = !k(t) + �(t) is a continuously varying
phase [6]. In practice the parameters Ak(t), N(t), and
�k(t) are estimated every 5-20 msec from the peaks in
the DFT spectra of the signal. Intermediate values are
obtained by interpolation.

The multi{resolution sinusoidal transform (MRST)
represents a signal as a sum of discrete time{varying
sinusoids of di�erent lengths [1]. The signal is still rep-
resented as in equation 1 but the analysis method is
changed. Parameters associated with high frequencies
are updated frequently using short DFT windows. Pa-
rameters associated with lower frequencies are updated
less frequently and are calculated using long DFT win-
dows for more accurate frequency estimation.



The MRST directly exploits several psychoacoustic
properties, that of masking and also frequency resolu-
tion. By picking only the peaks smaller signal com-
ponents, that would be masked by the nearby peaks,
are removed as part of the analysis process. By using a
multi{resolution approach, frequencies that the ear can
more closely discern are accurately determined, while
the higher frequencies that are not as accurately dis-
cerned may be calculated using shorter windows and
better time resolution.

The MRST analysis in this work was based on an
three level octave band decomposition of the speech
signal prior to the parameter estimation. The frame
updates for the lowest frequency band occurred every
10 msec and used a 30 msec analysis window.

3. WIENER FILTERING

A common model for a noisy signal, x(k), is a sig-
nal, s(k), plus additive noise, n(k), that is uncorrelated
with the signal

x(k) = s(k) + n(k): (2)

If the noise is also stationary then the power spectra of
the signal and noise add

Px(!) = Ps(!) + Pn(!) (3)

Spectral subtraction attempts to recover the signal
by estimating Pn(!) and subtracting it from Px(!).
The signal estimate, ŝ(k) is constructed from P̂s(!) =
Px(!) � P̂n(!) using the phase from the noisy signal.
Common variations include subtracting P̂n(!) or us-
ing the magnitude of the spectra instead of the power
spectra. When  > 1 this is called oversubtracting and
it eliminates noise more e�ectively at the expense of
some distortion in the speech.

The Wiener �lter, Hw(!), is the �lter which mini-

mizes
P

k
js(k)� ŝ(k)j

2
for Ŝ(!) = Hw(!)X(!). The

Wiener �lter is given by

Hw(!) =

�
Ps(!)

Ps(!) + Pn(!)

�
: (4)

This is not possible to implement in general since it is
IIR, non-causal, and Ps(!) and Pn(!) are not usually
known. However, it is possible to implement Wiener
�ltering on a frame by frame basis given estimates,
P̂s(!;m) and P̂n(!;m), of the speech and noise PSDs
respectively. The resulting �lter is given by

Hw(!;m) =

"
P̂s(!;m)

P̂s(!;m) + P̂n(!;m)

#
(5)

where m is the frame index.

3.1. Spectra Estimation

Perhaps the key factor in e�ective speech enhancement
is determining when speech is present and when only
noise is present. We used a simple but fairly accu-
rate voice activity detector (VAD) that used frame en-
ergy and spectral deviance to determine voice activity.
The frame energy is compared to a minimum frame
energy that is leaky (i.e., the minimum frame energy
increases over time to allow for changing signal con-
ditions). The spectral deviance is found by �rst pick-
ing 32 points of a smoothed version of the signal spec-
trum, ~X(!l;m), l = 0; :::; 31. These points are com-
pared to 32 points representing a special noise spec-
trum, ~N(!l;m) [7]. ~N(!l;m + 1) is then updated by
averaging it with ~X(!l;m) but only allowing a slight
decrease and an even smaller increase from ~N(!l;m).
This causes ~N(!l;m) to tend toward an estimate of the
noise spectrum [3]. Speech is assumed present if:

1. the signal exceeded a minimum energy level by
10 dB, or

2.
P31

l=0

��� ~X(!l;m)� ~N(!l;m)
��� exceeds the mini-

mum RMS level by 8 dB.

The noise spectrum, N(!;m) is estimated by av-
eraging the signal spectra over time when no speech
is present. The speech spectrum, S(!;m) is estimated
using spectral subtraction with an over subtraction fac-
tor,  = 2. Alternative methods include estimating the
speech spectrum by searching for harmonic sinusoids
among the MRST parameters or using LPC to model
the noisy signal and iteratively modeling and �ltering
until a relatively clean LPC representation is obtained.
A constrained LPC method of estimating the speech
spectrum has been used with excellent results [8].

3.2. Smoothed Wiener Filtering

A major source of distortion when performing Wiener
�ltering on real signals is rapid uctuation of Hw(!;m)
between frames. This is caused by inaccuracies in
the estimates of P̂s(!;m) and P̂n(!;m) produces small
anomalies in Ŝ(!;m) which result in the \musical" ar-
tifacts described above. This problem can be largely
eliminated by smoothing Hw(!;m) over time when no
speech is present. When speech is present Hw(!;m)
must be allowed to change rapidly or a reverberant ef-
fect is introduced as a time averaged spectra is imposed
upon subsequent frames.



4. MRST ENHANCEMENT IMPLEMENTATION

The Wiener �lter scheme described above was imple-
mented within the context of the MRST with a few en-
hancements. First, the signal estimates were updated
independently within each frequency band. Second, af-
ter �ltering, any sinusoids within a band that were less
than 20 dB below the largest sinusoid were eliminated.
Finally, it was possible to remove residual musical noise
by eliminating all sinusoids in any frequency band that
contained fewer than three sinusoids.

Spectrum estimates and speech{plus{noise/noise
decisions were made during analysis. However, these
decisions can also be made based only on the sinusoidal
parameters and methods exist for picking speech sig-
nals out of noise based only on the sinusoidal parame-
ters [9, 10].

5. OBSERVATIONS

Several sentences were used in informal testing by sev-
eral experienced listeners. For each sentence colored
and white noise was added to yield segmental SNRs of
10, 5, and -5 dB. The colored noise was a recording
of noisy electrical equipment including computer fans
and 60 Hz hum with a high harmonic content. All sig-
nals were processed with the smoothed Wiener �lter
described above, a modi�ed spectral subtraction algo-
rithm, and the MRST based Wiener �lter using four
levels for the MRST.

In some respects comparison between the various
methods is di�cult because the types of distortion were
di�erent for each method. Moreover, it is possible to
trade-o� the amount and type of distorion vs. the
amount of noise reduction by tuning parameters such
as a limit on the maximum allowed attenuation. Thus,
there are many possible operating points at which the
several methods of noise reduction may be compared.
This problem was addressed in a sub-optimal way by
�xing the attenuation limit on the MRST based Wiener
�lter to 15 dB and trying several di�erent limits on the
regular smoothed Wiener �lter.

In all cases the spectral subtraction produced the
worst sounding signal|musical noise was the main
problem but spectral subtraction also did a poor job
of removing the background noise.2

The smoothed Wiener �lter produced output that
was judged perceptually superior to the noisy signal in
all cases when the attenuation was limited to 10 dB
or 15 dB. However, when the attenuation limit was

2More background noise can be removed by using oversub-

traction of the noise spectrum but that results in more artifacts

and some parts of the speech signal being removed.

removed, the artifacts became more noticeable and the
processed speech was not consistently preferred over
the noisy speech.

The MRST based Wiener �lter achieved greater
noise reduction in all cases, even over the smoothed
Wiener �lter with no attenuation limit. This was at-
tributed to the fact that the MRST only retains the
largest spectral components during analysis; therefore,
much of the noise is eliminated before the Wiener �lter
is even applied. During the \silent" periods between
phrases, there was little or no perceivable background
noise remaining and almost no detectable musical noise
was present. However, the output of the MRST based
�lter had some artifacts associated with the process
of modeling noisy signals with the MRST. When the
noise power is comparable to the signal power, the
peak-picking can yield peaks whose frequency values
have been perturbed in addition to the noisy ampli-
tude. The Wiener �lter corrects for noise in the am-
plitude but not bad frequency estimates. Also, the
MRST based method produced some slight tonal ar-
tifacts when modeling breathy and non-voiced speech.
This is due to the MRST implementation itself and not
the noise reduction algorithm.

6. CONCLUSIONS

The results show that MRST provides an excellent
framework for signal enhancement and speci�cally
noise reduction. Background noise was suppressed sig-
ni�cantly more with the MRST based Wiener �ltering
than with the Wiener �lter applied directly to the noisy
signal. It was also possible to nearly eliminate \musi-
cal noise" artifacts using the MRST because they are
easily identi�ed in the MRST parameter set. An added
bene�t of the noise reduction algorithm is that the pro-
cessed signal is representable by fewer MRST parame-
ters than the original and may therefore be more easily
compressed.

The excellent performance of the MRST may be
explained in in several ways:

1. The MRST picks perceptually signi�cant param-
eters to model the audio signal; this tends to re-
move some noise components in a manner similar
to soft threshold wavelet based denoising.

2. Higher frequency spectral updates occur more
frequently giving a smooth estimate of the sig-
nal and noise spectra while still tracking the fast
changes that occur in that portion of the speech
spectrum. The frequency resolution that is sacri-
�ced is not as important in the high frequencies



while the time resolution gained is very impor-
tant for modeling the signal.

3. The longer analysis window lengths associated
with the lower frequencies enable the MRST to
more accurately determine the corresponding si-
nusoidal parameters even when noise is present.
Here the frequency resolution is important per-
ceptually but the time resolution is not as criti-
cal because the low frequency components of the
speech signal do not change as rapidly.

The ability of the MRST to model signals well, in
a perceptually signi�cant manner make it suitable to
a variety of applications. Additional applications for
which the MRST may be well suited include:

� signal conditioning for the hearing impaired [11,
12],

� time{scale modi�cation of speech,

� speech coding for mid to high bit-rates,

� and automatic speech recognition and ASR signal
conditioning.
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