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ABSTRACT
A neural network algorithm for speaker identification with large
groups of speakers is described.  This technique is derived from a
technique in which an N-way speaker identification task is
partitioned into N*(N-1)/2 two-way classification tasks.  Each
two-way classification task is performed using a small neural
network which is a two-way, or pair-wise, network.  The
decisions of these two-way networks are then combined to make
the N-way speaker identification decision (Rudasi and Zahorian,
1991 and 1992). Although very accurate, this method has the
drawback of requiring a very large number of pair-wise
networks.  In the new approach, two-way neural network
classifiers, each of which is trained only to separate two
speakers, are also used to separate other pairs of speakers.  This
method is able to greatly reduce the number of pair-wise
classifiers required for making an N-way classification decision,
especially when the number of speakers is very large.  For 100
speakers extracted from the TIMIT database, the number of pair-
wise classifiers can be reduced by approximately a factor of 5,
with only minor degradation in performance when 3 seconds or
more of speech is used for identification.  Using all 630 speakers
from the TIMIT database, this method can be used to obtain over
99.7% accuracy.   With the telephone version of the same
database, an accuracy of 40.2% can be obtained.

1. INTRODUCTION

There are several well-established techniques for speaker
recognition/identification (for example, see Gish and Schmidt for
a tutorial article).  Techniques include both parametric methods
such as Gaussian Mixture Models (Reynolds and Rose, 1995)
and nonparametric methods such as ones using vector
quantization (Soong et al., 1985; Matsui and Furui, 1991) or ones
which use neural networks (Bennani and Gallinari, 1991; Rudasi
and Zahorian, 1991 and 1992). The neural network approach,
which is used in this paper, although potentially very accurate,
has the drawback that, when a large number of speakers (i.e.,
classes for a pattern recognizer) is considered, the training time
required by the network becomes prohibitively long.
Additionally, the required amount of training data becomes very
large.  For this reason, some investigators partition the speaker
identification task into a number of small tasks. Each of these
small tasks requires a small size network which can be trained in
a shorter amount of time and with less training data (Bennani and
Gallinari, 1991; Rudasi and Zahorian, 1991 and 1992). One of
these partitioning techniques is called binary pair partitioning
(BPP) (Rudasi and Zahorian, 1991 and 1992).  This BPP
approach partitions an N-way speaker identification task with

N*(N-1)/2 pair-wise classification tasks.  Each of these pair-wise
classification tasks is performed using a "small" neural network.
Each of these pair-wise networks is trained to separate only two
speakers. That is, each pair-wise network is trained using speech
data from the two speakers for whom the network is intended to
separate.  The decisions of these pair-wise networks are then
combined to make the N-way decision.  For the N-speaker
identification task there are N*(N-1)/2 pair-wise decisions.  From
these pair-wise decisions there are N-1 decisions which are
relevant to a certain speaker.  The relevant decisions for each
speaker are then averaged and used as an estimate for the a
posteriori probability of that speaker. The advantage of using this
BPP technique relative to a single large neural network is that it
significantly reduces the training time and requires less speech
per speaker for training. The disadvantage of this technique is
that it requires a large number of pair-wise classifiers. The
purpose of this paper is to introduce a technique for reducing the
number of pair-wise networks required by the BPP approach.
This technique will also be referred to as reusable binary pair
partitioning (RBPP).

The remainder of this paper provides an explanation for this
method and summarizes some experiments with the TIMIT and
NTIMT databases used to evaluate this technique.

2. REUSABLE BINARY-PAIRED
PARTITIONING METHOD

The basis for expecting that pair-wise networks can be used to
separate many speaker pairs stems from the observation that
speakers are likely to be clustered in similar groups.   If a binary
network is trained to separate two speakers, with one speaker
from each of two widely separated groups, that network is also
quite likely to be effective in separating the other speakers
between those two groups.   For example, if a certain network is
trained to separate a specific female speaker from a specific male
speaker, it is quite likely that that network will also separate
many other female/male speaker pairs.

To take advantage of this speaker clustering in a systematic way,
we begin by arbitrarily selecting the first two speakers in our
speaker population and then training a network to separate these
two speakers, using only the available training data for these two
speakers.  This trained network is then evaluated as to how well
it can separate all other possible pairs of speakers in our
population, using the training data of these speakers.  A trained



network is considered sufficient to separate other pairs of
speakers if its performance, on the training data of these pairs of
speakers, exceeds a certain threshold. This trained network is
then used to replace those pair-wise networks which would have
been required by the BPP approach to separate those pairs of
speakers.  Thus the networks which would have been needed for
separating those pairs of speakers are eliminated.  We then train
another pair-wise network which was not eliminated by any of
the previously trained pair-wise networks.  Then we use that
newly trained network to eliminate other pair-wise networks as
described above. This process of training a network and
eliminating or replacing other networks is iterated until all pair-
wise networks are accounted for.  In practice, as shown in the
experimental section, this method can be used to greatly reduce
the number of pair-wise networks that would have been required
by the BPP approach.

In our implementation of this method, each newly trained network
is tested relative to all possible speaker pairs, including pairs for
which there is an already trained network. If the newly trained
network is able to better separate two speakers than the previously
selected network, it replaces the previous network for that speaker
pair. This process may also completely eliminate some of the
initially trained networks. It also insures that the trained networks
are used for best effectiveness and helps eliminate potential bias due
to the ordering of the speakers.

3. EXPERIMENTS

In order to evaluate this clustering method and compare it with
the BPP approach, several experiments were conducted.  The
main goal of these experiments was to show that, for a large
number of speakers, the RBPP method significantly reduces the
number of pair-wise networks with very little degradation in
identification accuracy.  For all experiments each pair-wise
network was a memoryless, feed-forward, multi-layer perceptron
and was configured to have one hidden layer of 5 nodes and one
output node.  Backpropagation was used for training these
networks with 200,000 network updates using an initial learning
rate of 0.25. The learning rate was reduced by a factor of .96
every 5000 network updates. A momentum term of .6 was used.

The TIMIT and NTIMIT speech databases were used for testing.
These data bases each contain 10 sentences for each of 630
speakers sampled at a 16 kHz sampling rate. Five of these 10
sentences are phonetically balanced sentences and are called SX
sentences. Three of these 10 sentences are phonetically diverse
sentences and are called SI sentences. The other two sentences
are dialect sentences and are called SA sentences. In all of our
experiments seven sentences (5 SX sentences and 2 SI sentences)
of each of the speakers were used for training and the other three
sentences were used for evaluation. The NTIMIT data base
contains the same data as the TIMIT data, except that all the
speech materials were transmitted over phone lines.

In all experiments 20 cepstral coefficients (CC0 to CC20) were
computed for each speech frame as follows.  First, a second order
high frequency pre-emphasis filter with a broad peak around 3
kHz was applied to the speech signal.  The second step was to

compute a 1024 point FFT from each 32 ms Kaiser-windowed
(coefficient of 5.33) frame of speech data with the window
advanced by 16 ms.  The following step was to compute the
amplitude spectrum, logarithmically scale it, and then frequency
warp it with a bilinear function using a coefficient of .45. The
next step was to compute the 20 cepstral coefficients as the
cosine transform of the scaled magnitude spectrum over the
frequency range 0 to 8000 Hz for TIMIT, and 300 Hz to 4000 Hz
for NTIMIT.

Experiment I

This experiment was conducted to investigate tradeoffs between
accuracy and number of networks needed as a function of a
"threshold" parameter.   Note that, in this application, since a
neural network output of .5 implies no discrimination between
the two speakers of a pair, whereas an output of 1.0 (or 0.0)
implies perfect discrimination, it was very straightforward to
define a threshold as some number between .5 and 1.0.  In
particular, the average neural network output level for all speech
frames was compared to the threshold value to determine if a
given network was suitable for discriminating between two
speakers.  The experiment was conducted using all 102 speakers
of dialect region 2 with the threshold value changed from 0.55 to
0.75 in steps of 0.05.  For comparison the experiment was also
conducted with the original BPP method, that is using all 5151
networks. The numbers of networks used for each of the
threshold values are shown in table 1a. Figure 1 shows the
identification accuracy for these 102 speakers as a function of the
amount of speech used for identification from each speaker and
for different values of the threshold, and for the complete set of
networks. The figure shows that when the threshold is higher
than 0.70, there is no significant improvement in performance,
and the performance is nearly equal to that of the BPP method.

This experiment was repeated using the same 102
speakers, but with the NTIMIT data base.  For this case
the threshold values were varied from .55 to .70. The
numbers of networks used for each of the threshold values
are shown in table 1b.

Threshold .55 .60 .65 .70 .75 BPP
Networks 35 127 353 781 1686 5151

Table 1a. Number of networks required for a given
threshold value for TIMIT data base experiments.

Threshold .55 .60 .625 .65 .675 BPP

Networks 156 691 1197 1849 2480 5151
Table 1b. Number of networks required for a given
threshold value for NTIMIT data base experiments.

The most dramatic difference between this case and the
data from TIMIT is that the overall accuracy is severely
degraded, as expected.   For this case, performance of the
RBPP method is also approximately equal to that of the
complete BPP method, for thresholds of .675 or more.
However, many more networks are needed to reach this
threshold than for the case of TIMIT.
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Figure 1.  Speaker identification accuracy as function of test
speech length for various thresholds for replacing networks.
The upper panel is for TIMIT, and the lower panel is for
NTIMIT.

Experiment II

The purpose of this experiment was to experimentally
determine the reduction in the number of required pair-wise
networks as the number of speakers increases. We varied the
number of speakers from 25 to 400 speakers. The number of
networks required by the BPP approach are, of course,

determined solely by the number of speakers. Figure 2 shows the
number of networks required by each of the two approaches as a
function of the number of speakers. A threshold of .70 was used
for the RBPP method for the TIMIT data, and a threshold of .625
for the case of NTIMIT.  As the figure shows, for the thresholds
used, the number of networks required for the RBPP is
approximately 1/10 of the number needed for the BPP approach
for each number of speakers. Thus, the computational load of the
recognizer is also reduced by about a factor of 10.
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Figure 2. The number of networks required for the reusable
binary paired partitioned classifier as a function of the number of
speakers.

Experiment III

This experiment was conducted to evaluate the performance of
the RBPP approach when applied to a large number of speakers.
For this purpose, the RBPP system was trained for all 630
speakers for both the TIMIT and NTIMIT data bases.  A
threshold of .75 was used  for the TIMIT data and .600 for the
NTIMIT data base.  A total of 43000 pair-wise networks were
computed for TIMIT and 22,000 for NTIMIT as compared to
198,900 networks which would have been needed by the BPP
approach. Figure 3 shows the performance achieved by the
system for the 630 speakers as a function of the amount of
speech used for evaluation. For each data base, two curves are
drawn: one is the accuracy considering only if the correct choice,
the other is the accuracy if the correct speaker is among the top 5
choices.



0

20

40

60

80

100

120

0 2 4 6 8 10

length of test speech (sec)

%
 c

or
re

ct

timit-1 timit-5 timit-1 timit-5

Figure 3.  Performance achieved by the RBPP classifier for a
630 speaker identification task, as a function of the amount of
speech used for evaluation.

For the 630 speakers of TIMIT, we obtained 96.4% accuracy
when 3 seconds of speech (one sentence) was used. This
accuracy improves to 100%, as the test length increases to 9
seconds and if a speaker is considered "correct" if among the top
5 choices of the classifier.  For the case of NTIMIT, the
corresponding accuracy rates are 25.6% and 65.7%.  Compared
to another study which reported speaker identification results for
all 630 speakers of TIMIT (Reynolds et al., 1995), these results
are very similar for the case of TIMIT, but lower for NTIMIT. It
should be noted however, that there are several other differences
between our work and this previous work, including the fact that
the two sentences with the same speech materials for all speakers
(the SA sentences) were used as training sentences in this
previous study, thus not making the tests totally text independent.
In our work, the SA sentences were used for testing only, thus
not biasing the training process.

3. CONCLUSION

The RBPP technique described in this paper was shown to be
very effective in reducing the number of pair-wise networks
required for an N-way speaker identification task compared to
the BPP approach. The performance obtained with this technique
is nearly as good as the BPP approach, provided the number of
networks is reduced by no more than a factor of approximately
10.

The method provides a very convenient mechanism for trading
off accuracy versus computational demands and storage
requirements. If lower accuracy can be tolerated, a lower

threshold for replacing networks can be used to reduce the
number of networks needed.

An apparent extension of the method would be to retain the
reused networks, using all data from speakers in the two groups
separated by the network.  Presumably, this would further reduce
the number of networks needed for a given level of performance.
It could also allow better scaling properties to very large speaker
populations.
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