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ABSTRACT

In this paper, a new adaptive subband structure with critical sam-
pling of the subband signals, which yields exact modeling of FIR
systems, is derived. An adaptation algorithm, which minimizes the
sum of the subband squared-errors, is obtained for the updating of
the coefficients of the new subband structure, resulting in signifi-
cant convergence rate improvement for colored input signals when
compared to the full-band LMS algorithm. A simplified version
of the adaptation algorithm, with reduced computational complex-
ity, is also presented. An efficient implementation of the proposed
subband structure is described, with computational savings of the
order of the number of subbands when compared to the full-band
LMS. Computer simulations illustrate the convergence behavior of
the proposed algorithms.

1. INTRODUCTION

Adaptive FIR filters are attractive in many applications due to their
stability and unimodal performance surface properties. However,
when the order of such filters is very high, a large number of oper-
ations is needed for their implementation and the adaptation algo-
rithm presents slow convergence. Alternative structures that make
use of multirate concepts have been proposed [1]-[5] with the ob-
jective of reducing the drawbacks described above. In most of
these subband structures, the signals at the outputs of the analy-
sis filter banks are down-sampled and the adaptation is performed
at the reduced sampling rate [1]-[3], which leads to large compu-
tational savings for high-order filters, with the introduction of an
extra input-output delay.
In order to model a finite impulse response system with small
asymptotic errors, the adaptive subband structure with critical sub-
sampling requires additional adaptive cross-filters between the sub-
bands [2]. These cross-filters, however, increase the computational
complexity and reduce the convergence rate of the adaptive algo-
rithm. In this paper, a new adaptive subband structure with critical
sampling of the subband signals, which also yield exact modeling
of FIR systems, is obtained. The resulting structure also presents
extra filters between the subbands, but such filters are identical to
the direct-path adaptive filters, and do not need to be adapted sep-
arately. Therefore, the computational complexity is reduced and
the adaptation speed is improved when compared to algorithms
derived in [2]. An adaptation algorithm based on the normal-
ized LMS algorithm is derived for the updating of the subfilter
coefficients of the new subband structure. Then, a possible sim-
plification in the algorithm is described, which results in compu-
tational complexity reduction, with, however, some degradation

in the convergence rate. An efficient implementation of the new
subband structure, which employs cosine modulated filter banks,
is discussed and its computational complexity is analyzed. The
convergence behavior of the proposed algorithms is illustrated by
computer simulations and compared to the behavior of the full-
band LMS algorithm and of the subband algorithms presented in
[2].

2. THE NEW ADAPTIVE SUBBAND STRUCTURE WITH
CRITICAL SAMPLING

The new adaptive subband structure is derived from the filter bank
structure with adaptive sparse subfilters of Fig. 1(a), which can be
redrawn as in Fig. 1(b) by making use of the polyphase matrix of
the analysis bankHp(z).

Figure 1: Adaptive structure: (a) with an analysis filter bank and
sparse subfilters; (b) with polyphase representation of the analysis
bank.

In a system identification application, the coefficients of the
filter bank structure are adapted such as to model an unknown FIR
system, denoted here byP (z). The polyphase representation of
P (z) is shown in Fig. 2(a). Including before the polyphase com-
ponentsPk(z) of Fig. 2(a) the matricesHp(z

M) andF p(z
M),

as shown in Fig. 2(b), such thatF p(z)Hp(z) = z��IM , where
IM is theM �M identity matrix, the transfer function of the sys-
tem is not altered, except for the introduction of a constant delay of
M� samples.Hp(z) andF p(z) that satisfy the above condition
correspond to the analysis and synthesis polyphase matrices of a
perfect reconstruction multirate system.

Figures 1(b) and 2(b) are equivalent, i.e., both structures im-
plement the transfer functionz�M�P (z) when
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Figure 2: Equivalent polyphase decomposition representations of
the unknown systemP (z).

�
P0(z) P1(z) � � � PM�1(z)

�
F p(z): (1)

Therefore, by using an analysis filter bank which yields perfect
reconstruction and adaptive subfilters of sufficient order such that
Eq. (1) can be satisfied, the structure of Fig. 1 implements exactly
any FIR system.
We now derive the adaptive subband structure with critical sub-
sampling by including maximally decimated perfect reconstruc-
tionM -band systems following each sparse subfilter in Fig. 1(a),
as illustrated for thek-th band in Fig. 3. Then, moving the sparse

Figure 3: Illustration of thek-th band of the filter bank structure
followed by perfect reconstruction multirate system.

subfiltersGk(z
M ) to the right of the decimators (becomingGk(z)

by thenoble identity[6]), and assuming that non-adjacent filters
of the analysis filter bank have frequency responses which do not
overlap, the structure of Fig. 4 is obtained. Observe that in the
resulting structure onlyM subfilters need to be adapted, namely
G0(z); � � � ; GM�1(z), and that they operate at a rate which is
1=M -th of the input rate. From Eq. (1), the length of each subfil-
terGk(z) should beK = (Np + Nf )=M + 1, whereNp is the
order of the systemP (z) to be identified andNf is the order of
the synthesis filterFk(z).

3. ADAPTATION ALGORITHMS

A normalized LMS-type algorithm is used for updating the coef-
ficients of the subfilters. DenotingXi;j(m) the vector contain-
ing the lastK samples of the signalXi;j(m) at the output of the
analysis filterHi(z)Hj(z) after down-sampling,Gi(m) the vec-
tor containing the coefficients of the subfilterGi(z) at iteration
m andK the number of coefficients of each subfilter, the general
form for the LMS adaptation algorithm that minimizes the sum of
the instantaneous subband squared-errors, i.e.,

J(m) =

M�1X
i=0

E2
i (m); (2)
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Figure 4: Adaptive subband structure withH
0

k(z) = Hk(z).

is given by1:

Gk(m+ 1) = Gk(m) + �k[Xk;k(m)Ek(m)

+Xk�1;k(m)Ek�1(m) +Xk;k+1(m)Ek+1(m)]; (3)

In the above equations, the error signalsEk(m) are given by

Ek(m) = Dk(m��)� [XT
k;k(m)Gk(m)

+XT
k�1;k(m)Gk�1(m) +XT

k;k+1(m)Gk+1(m)]; (4)

where� = (Nh +Nf )=2M corresponds to the delay introduced
by the filter banks (Nh andNf are the orders of the analysis and
synthesis filters, respectively). In order to improve the conver-
gence rate of the adaptation algorithm for colored noise input sig-
nals, the step-sizes are made inversely proportional to the sum of
the powers of the signals involved in the adaptation of the coeffi-
cients, that is:

�k =
�

Pk;k + Pk�1;k + Pk;k+1
; (5)

wherePi;j is the power estimate of the signalXi;j .

3.1. Simplified Algorithm

A simplified adaptation algorithm which also converges to the op-
timal solution with some degradation in the convergence rate is
given by

Gk(m+ 1) = Gk(m) + �kXk;k(m)Ek(m); (6)

1For the first and last subbands (k = 0 andk =M�1) only two terms
appear in the coefficient updating part of Eq. (3) and in the error expression
of Eq. (4), i.e., one should considerX

�1;0 = 0 andXM�1;M = 0 in
such equations.



with the error signals as in Eq. (4) and the step-sizes equal to
�k = �=Pk;k. The computational savings and the convergence
degradation resulting from the above algorithm simplification will
be discussed in the next sections.

4. EFFICIENT IMPLEMENTATION AND
COMPUTATIONAL COMPLEXITY

One of the major advantages of adaptive filtering in subbands is the
savings in the computational complexity which can be achieved
when implementing high-order filters. In this section, we describe
an efficient implementation of the subband structure of Fig. 4 us-
ing cosine modulated filter banks and compare the number of mul-
tiplications required by it with those required by the full-band LMS
algorithm and by the cross-filter subband algorithms of [2].

The analysis filtersHk(z)Hk(z) andHk(z)Hk+1(z) applied
to the input signal (see Fig. 4) can be efficiently implemented
using the cosine modulation method [7], as shown below. Denot-
ing by p0(n) the impulse response of a prototype filter of length
Nh + 1 which yields perfect reconstruction when used in a cosine
modulated analysis-synthesis system, the impulse response of the
analysis filtersHk(z) are related top0(n) by [7]:

hk(n) = 2p0(n)cos(!kn+ �k); (7)

with !k = (k+ 1
2
) �
M

and�k = �(k+ 1
2
)(Nh

2
) �
M

+ (�1)k �
4

, or
in the frequency-domain:

Hk(e
j!) = P0(e

j(!�!k))ej�k + P0(e
j(!+!k))e�j�k : (8)

The impulse responses of the filtersHk(z)Hk(z) are given by
hk(n) � hk(n), or in the frequency-domain:

[Hk(e
j!)]2 = P 2

0 (e
j(!�!k))ej2�k + P 2

0 (e
j(!+!k))e�j2�k

+2P0(e
j(!�!k))P0(e

j(!+!k)): (9)

The last term of the above expression can be neglected, since it is
assumed that non-adjacent analysis filters do not overlap. Thus:

hk(n) � hk(n) � 2[p0(n) � p0(n)]cos(!kn+ 2�k); (10)

and the filtersHk(z)Hk(z) of Fig. 4 can be efficiently imple-
mented by a cosine modulation technique with prototype filter
p0(n) � p0(n) of lengthL = 2Nh + 1.

Similarly, the impulse responses of the filtersHk(z)Hk+1(z)
can be approximated by:

hk(n) � hk+1(n) � 2q0(n)cos
�
(!k +

�

2M
)n+ �k + �k+1

�
; (11)

where

q0(n) = p0(n)e
�j �

2M
n
� p0(n)e

j �

2M
n: (12)

Therefore, the filtersHk(z)Hk+1(z) can also be implemented by
the cosine modulation technique with prototype filterq0(n) given
above.

The overall number of multiplications per input sample re-
quired by the proposed subband structure is:

2(3M � 2)(Np +Nh)

M2
+

2(3Nh � 1)

M
+ 4 log2M; (13)

with the first term corresponding to the filtering and adaptation of
the subfiltersGk(z), the second term to the implementation of the

prototype filters, and the last term to the computation of the four
DCTs required for modulation. For high-order adaptive filters, the
dominant term in the above expression is6Np=M , which is about
M=3 times smaller than the number of multiplications required by
the full-band LMS algorithm (2Np).

The proposed subband structure with the simplified adaptation
algorithm presented in the last section requires the following num-
ber of multiplications per sample:

(4M � 2)(Np +Nh)

M2
+

2(3Nh � 1)

M
+ 4 log2M; (14)

which can be approximated by4Np=M for high-order adaptive
filters. Therefore, the number of multiplications needed to imple-
ment the simplified algorithm is aboutM=2 times smaller than
the number of multiplications required by the full-band LMS al-
gorithm.

The complexity reduction obtained with the proposed struc-
ture for high order filters is comparable to that obtained with the
cross-filter overdetermined algorithm with factorization of the cross-
filters [2] (which is3M=5 times smaller than that of the LMS) and
much better than that obtained with the nonoverdetermined algo-
rithm [2] ( which isM=3log2M smaller than that of the LMS).

5. SIMULATION RESULTS

In order to compare the proposed algorithms with previously pro-
posed ones, we performed simulations with the new subband struc-
ture, with the cross-filter structure and the overdetermined adapta-
tion algorithms presented in [2], and with the full-band LMS algo-
rithm. System identification problems are considered, with exact
modeling of FIR systems. For the proposed structure, the length of
the adaptive subfilters wasK = (Np+Nh)=M +1, while for the
cross-filter structure,K was computed as described in [2]. In all
simulations, we employed the value of the step-size which resulted
in the best convergence rate for each algorithm.

5.1. Two-band Structure

The system to be modeled was a lengthNp + 1 = 256 FIR filter.
The analysis and synthesis banks were cosine modulated banks
with prototype filters of lengthNh + 1 = 24 [6]. The input signal
was a white-noise gaussian sequence of unit variance. A white-
noise sequence of variance�2n = 10�10 was added to the desired
signal.

Figure 5 presents the MSE evolution for the LMS and subband
algorithms. The proposed structure with two subbands is able of
exactly modeling an FIR system and its convergence rate is simi-
lar to that of the full-band LMS when both adaptation algorithms
operate with white-noise input signal and with maximum step-
sizes. The cross-filter structure without cross-filter factorization
takes about twice the number of iterations of the proposed structure
to converge, and the factorized cross-filter algorithm presents ini-
tially the same convergence rate as the non-factorized algorithm,
but the MSE reaches only�32 dB.

5.2. Multiband Structure

In this experiment, we performed simulations with the full-band
LMS and with the proposed subband structure withM = 2; 4; 8
and16 subbands using perfect reconstruction analysis and synthe-
sis cosine modulated filter banks [6] with prototype filter lengths



-120

-100

-80

-60

-40

-20

0

0 200 400 600 800 1000

M
SE

 (
dB

)

Iteration Number (x50)

Proposed sub. str.
Full-band LMS

Non-fact. cross-filter str.
Factorized cross-filter str.

Figure 5: Simulation results for the proposed and cross-filter two-
subband structures, and full-band LMS algorithm, with white-
noise input.

Nh + 1 = 24; 96; 128; 256, respectively. An identification of
a lengthNp + 1 = 880 FIR system was considered, and the in-
put signal was a colored noise sequence generated by passing a
white noise sequence by a first-order IIR filter with pole located at
z = 0:9.

Figure 6 presents the MSE evolution of the LMS and the pro-
posed subband algorithm (non-simplified) with different numbers
of bands. This figure shows that the new subband structure presents
better convergence rate than the LMS algorithm when the number
of subbandsM is equal or larger than8, due to the power nor-
malization of the step-sizes. ForM larger than2, the proposed
structure converges to an MSE of the order of the stopband atten-
uation of the analysis filter (which is around�80 dB for M = 8
and16, and�100 dB forM = 4), due to the assumption of non-
overlapping non-adjacent analysis filters. ForM = 16, the con-
vergence rate of the subband structure for colored input is practi-
cally the same as for white input.

-100

-80

-60

-40

-20

0

0 200 400 600 800 1000

M
SE

 (
dB

)

Iteration Number (x50)

LMS

M=2

M=4
M=8

M=16

Figure 6: Simulation results for the proposed structure withM =
2, 4, 8 and16, and for the LMS algorithm, with colored input.

5.3. Simplified Algorithm

In this experiment, we compare the convergence behavior of the
adaptation algorithms described in Section 3. The system to be
identified and the filter banks used in this experiment were the
same as in the multiband experiment described above. The MSE
evolution results for both algorithms withM = 16 subbands are

presented in Fig. 7, where we can observe the degraded conver-
gence rate of the simplified algorithm. Such degradation corre-
sponds to a reduction in the converge speed by a factor of2.
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Figure 7: Simulation results for the simplified and non-simplified
algorithms, withM = 16 and colored input.

6. CONCLUSIONS

In this paper a new subband structure with critical sampling of the
subband signals has been investigated. We have derived adapta-
tion algorithms for the new subband structure, which requires the
update of onlyM subfilters in anM -band scheme. An efficient
implementation, as well as a computational complexity analysis
of the new subband structure, have been presented. It has been
shown that besides exactly modeling, significant convergence im-
provement can be achieved with the proposed structure for colored
input signals. For high-order filters, savings in the computational
complexity of the order of the number of subbands is obtained.
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