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ABSTRACT
We are interested in adaptive spoken dialog systems for
automated services. Peoples’ spoken language usage varies
over time for a fixed task, and furthermore varies depending
on the state of the dialog.  We will characterize and quantify
this variation based on a database of 20K user-transactions
with AT&T’s experimental ‘How May I Help You?’ spoken
dialog system.  We then report on a language adaptation
algorithm which was used to train state-dependent ASR
language models, experimentally evaluating their improved
performance with respect to word accuracy and perplexity.

1. INTRODUCTION

There exist a variety of interactive speech systems in laboratories
around the world, some even in actual service.  There are,
however, many open issues concerning how to provide
robustness for large populations of non-expert users.  We address
the problem of creating natural spoken dialog systems for
automated services.  By natural, we mean that the machine
recognizes and understands what people actually say, in contrast
to what a system designer hoped they would say.  This approach
is in contrast with menu-driven or strongly-prompted systems,
where many users are unable or unwilling to navigate such highly
structured interactions.  This research targets shifting the burden
from human to machine, wherein the system adapts to peoples’
language, as contrasted with forcing users to learn the machine’s
jargon.

We have been investigating methods for spoken language
understanding from fluent speech [G95][G97]. Recognizing
fluent speech over the telephone is a difficult task, at best.
Similarly, a complete linguistic analysis of people’s natural
language is also not in hand.  For any particular task, however,
one observes that there are some events which are crucial to
detect and analyze correctly, others not so.  We have quantified
this notion via information theory, defining salience as the
mutual information of a linguistic event for the random variable
representing machine actions [G95].  We have reported on
algorithms which automatically acquire and exploit salient words
[G95], phrases [R97] and grammar fragments [W97][A98].  We
have embedded these methods within an experimental spoken
dialog system [A97][B96], which has been evaluated on 20K
user-transactions.

Peoples’ spoken natural language is highly variable.  A first and
well-studied dimension of variation is over a large user

population.  Different people use different words and sentence
structure to convey the same meaning.  The second variation is
over time.  The ensemble user-behavior changes as does the
world (e.g., ten years ago nobody asked for internet access.)
Furthermore, there are shifts in language usage as people adapt to
speaking with machines.  The third variation is over dialog state.
Depending on the dialog history, people will of course respond
differently.

The current incarnation of AT&T’s “How May I Help You?”
prototype system was trained in three major stages.  The first step
was to collect data on what people say to human agents, then to
automatically train language models for both recognition and
understanding.  This enabled us to automatically map what
people say to what they want [G97].  The second step was to
embed this recognition/understanding mechanism in a dialog
system [A97], with place-holder grammars for those stages where
there was no training data.  We then collected data on 8K
transactions of this system with live traffic.  The third step was to
exploit that dialog data to adapt the original human/human
language models, compensating for language variations over time
and dialog-state.  This adapted spoken dialog system was then
evaluated on 12K transactions.

In Section 2 we describe the language variability over these three
databases.  The language model adaptation algorithm is described
in Section 3.  This algorithm is experimentally evaluated in
Section 4, measuring improvements in word accuracy and
perplexity resulting from the adapted ASR language model.

2. Measuring Language Variability

2.1 Databases

The first database was generated from recordings of users talking
with human agents, responding to the prompt “AT&T.  How may
I help you?’  The characteristics of this data and early
experiments were detailed in [G97].  We denote this set of 10K
human/human interactions by HH.

These models were embedded in a spoken dialog system, using
place-holder models at those states where we had no data. This
dialog system was then run on 8K user-transactions.  The
resulting data on these human/machine interactions was split into
training and test, denoted by HM1

train and HM1
test respectively.

The HM1 data was further partitioned based on a coarse dialog
state.  There are many notions of dialog state in the literature.  In
fact, the dialog manager in this system [A97] has no explicit
representation of state.  But, in these experiments we model
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users’ response to various equivalence classes of prompts.  This
is a first-order approximation to dialog history.  Examples from
these various classes are shown in Table 1.

Prompt Class Example
GREETING AT&T, How May I Help You?
BILLING_METHOD How would you like to bill this call?
CARD_NUMBER May I have your card number, please?
CONFIRMATION Do you need me to give you credit?
PHONE_NUMBER What number would you like to call?

REPROMPT  Sorry. Please briefly tell me how may
I help you?

Table 1.  Dialog State as Prompt-Equivalence Classes

After adaptively training the state-conditional models by
exploiting the data HM1 , the system was then run for an
additional 12K user-transactions.  This data is denoted HM2, and
is used in this paper only for testing.  It is similarly split with
respect to dialog-state, as above.

2.2 Utterance Length

As was observed in [G97], the number of words per utterance in
HH is unimodal and highly skewed with a long tail.  In Figure 1,
we compare that to the length distribution for responses to the
greeting prompt in HM1 .  First, observe that the HM1 histogram
is bimodal.  One mode corresponds to menu-speak:  when people
are aware that they’re talking with a machine, then they
sometimes speak in short fragments.  Interestingly, while some of
the menu-speak corresponds to keywords on deployed menus,
many do not.  Instead, these short phrases often correspond to the
salient fragments which were derived from the HH natural
language database.  Observe also that the second mode of HM1 is
almost identical to the single mode of the HH responses.  Thus,
we can view the HM greeting-responses as a mixture of menu-
speak and natural spoken language, with the second component
similar to the natural language in HH.

Also in Figure 1, we observe that the HM1 distribution tail falls
off much faster than for HH.  Upon inspection, we observe that
the very long utterances in HH are accompanied by an agent’s
back-channel utterances such as ‘uh-huh’, encouraging the
customer to continue talking.  In the case of HM, there is no such
back-channel encouragement from the machine, so people don’t
tell long stories as often.  Finally, also in Figure 1, we plot the
length distribution for responses to a reprompt in HM1, observing
that it is also unimodal and similar to the HH distribution of
natural language responses to a human agent.

We then measure the length distribution for responses to
confirmation prompts, as shown in Figure 2.  The responses are
divided into three categories:  explicit affirmations, explicit
denials, and other.  Explicit affirmation/denials are sentences
which contain the words yes or no or some variant thereof.
These are sometimes spoken in isolation, or as a prepend to a
natural language utterance to provide further task information.
For example, responding to the prompt ‘Do you want to make a
credit card call?’ , as user might respond ‘Yes, the card number
is xxxxxxx.’  The other category occurs during context-switching,
error recovery or user-confusion.

Observe that the affirmation-length distribution is unimodal and
tends to comprise shorter utterances than the denials.  The
explicit denials are a bimodal mixture of short responses plus a
second mode at the same position as for the greeting prompts.
These modes correspond to people answering ‘no’ or some
variant (short utterances) or to people using natural language,
often with ‘no’ prepended..  Thus, it is more likely for no to be
followed by additional spoken information than it is for yes.
Finally, the ‘other’ responses also have their mode at that same
position, corresponding to the natural language distribution.
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Figure 1. Utterance Length Distribution
for Responses to Greetings and Reprompts.
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3. Language Adaptation for Spoken Dialog
There is a large literature on training and adapting language
models for ASR.  Typically, one assumes that the training data is
drawn from the same source as the test set.  In a spoken dialog
system, however, a user’s response depends strongly on the
history of the dialog to that point.  Thus, rather than merely
modeling the probability of an utterance, we instead model the
conditional probability given some dialog state and history.  Let

 N w,..., 2w, 1w denote the word sequence in an utterance of

length N.  Denote by si  a particular state, where 0 < i < K  and K
is the number of states.  The state-conditional probability can be
expressed as follows.

(1)      )is;1-jw,...,2w,1 w| jP(w 
j

    )is|Nw,...,2w,1P(w ∏=

The state conditioning partitions the database, providing
insufficient training data for each state in isolation.  This is one
motivation for adaptive training.  A second motivation derives
from the goal of naturalness:  people should be able to say
anything at anytime and have the machine respond appropriately.
This user-behavior occurs during on-line error recovery and
context-switching in natural spoken dialog. An illustrative
example of a dialog with context-switching is as follows.

M:  How may I help you?
U:  I want to put this on my charge card.
M:  What is your card number?
U:  Uh, I can’t find it.  Can I make this a collect call?
M:  What number would you like to call?
U:  Good question. I need John Smith’s number in Newark.
M:  Please hold on for directory assistance.

In other works [P97] [S96], researchers have similarly
partitioned data sets, then created separate, often disjoint models
for each dialog state.  That approach restricts a user, at a
particular point in the dialog, to only saying what has been
previously encountered there.

The stochastic language model in these experiments is the
Variable Length N-gram Stochastic Automaton (VNSA) as
described in [R96].  This is an automatically-trained non-
deterministic stochastic finite state machine, which efficiently
approximates n-gram, phrase-based and class-based models.

First, a VNSA-model is trained from the HH data, denoted Τλ
[G97].  The HH database comprised only responses to the

greeting prompt, so that Τλ is derived from that initial dialog
state alone.  The set of all user-responses in HM1

train is
partitioned into training Ti , development Bi and test sets Ei , for

each dialog state si.  The HH greeting model Τλ  is adapted for
each state si  using the data Ti , via maximizing the log likelihood

(2)  ) |  P( log maxarg A
iii

A
i

λλ
λ

Τ=∗ .

The adapted model  i
∗λ is constrained to be a linear interpolation

  A
iλ of Τλ  with some state-dependent model  iλ . Starting

from Τλ , for each subset Ti  viterbi training is run to obtain a

state-dependent model  iλ .  For any states ti and tj in the VNSA

language model, the transition probabilities in the interpolated

models  i
Aλ (0<A<1) are computed via

(3) ) t| (t P )-(1  ) t| (t P   ) t| (t P 1-jjii1-jji1-jj
A
i αα += Τ

There is no closed-form solution for the parameters iα  in

equation 2 constrained by equation  3.  Hence, development set
Bi is used  to iteratively discover the local maximum over a finite
number of iα  values.  This adaptation for each dialog state si is

illustrated in Figure 3.

Figure 3.  ASR Language Model Adaptation

4. Experimental Evaluation

Recall that Τλ  is a language model trained from HH:  peoples’
responses to a human agent’s greeting.  The state-conditional

model  i
∗λ  for state si was obtained by adapting Τλ  with the

data Ti and Bi from HM1
train .  One method to evaluate the utility

of this adaptation is to compute their test-set perplexities on the
partitioned test sets Ei  in HM1

test  , as shown in Table 2.  Also
shown is the perplexity on HM2 .

Recall from [G97] that the test-set entropy of HH was 18.2.  The
responses to the greeting prompt in HM1 occurred later in time,
with a modified prompt to ‘tip our hand’ that people were talking
with a machine [B96].  The language variation in both time and
state is illustrated by each row of Table 2.  For example, the

model of greeting-responses Τλ  models the utterances in HH
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significantly better than any utterances in the Ei .  Furthermore,

the adapted language model   i
∗λ provides a significantly lower

perplexity for the human/machine data than the human/human
data.  Observe also that the adapted model does a better job of
modeling the greeting-responses in HM1 , as compared to HM2.
This confirms our intuition that people’s responses are ‘simpler’
in HM than HH, as discussed also in our earlier analysis of
utterance-length.

Dialog State Baseline
Τλ  on

HM1

Adapted

 i
∗λ on

HM1

Adapted

 i
∗λ on

HM2

GREETING 17.3 12.8 13.8

REPROMPT 15.1 13.2 13.8

BILLING
METHOD

17.0 6.4 8.4

PHONE
NUMBER

19.8 12.8 15.7

CARD
NUMBER

21.2 15.0 16.1

CONFIRMATION 27.8 11.2 31.6

Table 2.  Perplexity Reduction  via Adaptation to Dialog State

In Table 3, we provide corresponding measurements of word
accuracy at each dialog state for these adapted models.  An
additional column is provided, giving the word-accuracy using
the place-holder language models used during the HM1 trial and
data collection.  The word accuracy is improved over the baseline
system across all dialog states.  We remark that for the card and
phone number responses, this is the accuracy for all words, not
just the digits.  A detailed discussion of the language distribution
and baseline performance for utterances containing embedded
digit sequences is in [R98].  We also remark that task accuracy is
>> word accuracy, as detailed in [G97].  The latest reported
result is 91% correct call-classification on the HH greeting-
responses [W97].

Prompt-Class HM1
trial

Baseline

( Τλ )

Adapted

(
*
iλ )

GREETING 52.4 52.4 56.2
REPROMPT 56.7 56.7 57.4
BILLING_METHOD 60.0 62.9 64.0
PHONE_NUMBER 70.0 79.2 82.1
CARD_NUMBER 72.5 84.5 87.0
CONFIRMATION 39.6 54.4 58.3

Table 3.  Percent Word Accuracy of State-Adapted Models

For the number queries ( PHONE and CARD), the place-holder
grammars in the HM1 trial were merely digit loops with
appropriate constraints and garbage models at each end.
Although most of the tokens in those utterances were indeed

digits, there were still 15% non-digit tokens.  Thus, adapting a
large vocabulary grammar improves word accuracy over the
digit-only grammars.

5. CONCLUSIONS

We have presented a language adaptation algorithm for training
state-conditional models in a natural spoken dialog system.
These models allow users to say anything at anytime in the
dialog.  This algorithm was evaluated with respect to perplexity
and word accuracy on a database of 20K human-machine
transactions.  A next step is to evaluate its impact on natural
language understanding rate.  A further step is to refine and
extend the notion of dialog state in these experiments.
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