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ABSTRACT

In state-of-art large vocabulary continuous speech recognition (LVCSR)
systems, HMM state-tying is often used to achieve good balance
between the model resolution and robustness. In this paradigm,
tied HMM states share a single set of parameters and are non-
distinguishable. To capture the fine differences among tied HMM
states, a probabilistic classification of HMM states (PCHMM) is
proposed in this paper for LVCSR. In particular, a distribution
from a HMM state to classes is introduced. It is shown that the
state-to-class distribution can be estimated together with conven-
tional HMM parameters within the EM [3] framework. Compared
with HMM state-tying, probabilistic classification of HMM states
makes more efficient use of model parameters. It also makes the
acoustic model more robust against the possible mismatch or vari-
ation between training and test data. The viability of this approach
is verified by the significant reduction of word error rate (WER)
on the Switchboard [7] task.

1. INTRODUCTION

In state-of-art LVCSR systems, HMM state-tying is used to find
a good compromise between the model resolution and robustness.
Representative work includes CMU “senone” [8], SRI “genone”
[4], IBM decision network [1] and HTK state clustering based on
phonetic decision trees [13]. Although details differ from site to
site, the essence of these methods is to find a tying point, typically
HMM state, in the HMM framework, and build a relatively crude
model to collect statistics based on which a classification algorithm
is carried out to group HMM constructs into equivalence classes.
After HMM states are clustered, the number of free parameters is
reduced, and Baum-Welch[2] algorithm can be used to estimate
reliably class-dependent HMM parameters.

In the tying paradigm, different tied HMM states, or equiva-
lence classes of HMM states, are modeled with independent pa-
rameters. However, acoustic regions corresponding to tied classes
are invariably overlapped. Therefore, it is inefficient to use sepa-
rate parameters to model tied states. In continuous density HMM
(CDHMM), the state output distribution typically takes the form of
a mixture of Gaussians. Parameter independence limits the num-
ber of Gaussians that can be used since parameters can not be reli-
ably estimated if an excessive number of Gaussians is used.

In our previous work [10], we proposed non-reciprocal data
sharing (NRDS) when estimating HMM parameters. It aims at
capturing the fine differences among HMM states in an equiva-
lence class. NRDS [11] reduces WER at the cost of increasing the
number of model parameters . To remedy this, we propose here

to use the probabilistic classification of HMM states in LVCSR.
In this method, a HMM states is assigned to a classr based on a
probabilityw(rjs), and the class of HMM statesr is modeled by a
mixture of Gaussians. Since Gaussians of a classr can be used in
many HMM states, this makes efficient use of model parameters
so that rich distributions can be modeled without increasing the
model size. At the same time, allowing a HMM state to contribute
to more than one class also makes an acoustic model robust against
the possible mismatch or variation between training and test data.
This will be elaborated in the subsequent sections of this paper.

A recent study Nakamura [12] compares the most-likely state
sequence and the forced-aligned state sequence and analyzes how
often an “error” occurs. If an error is seen frequently enough, the
most-likely Gaussian is augmented to the corresponding forced-
aligned state. The final model structure is such that HMM states
can have variable number of Gaussians and a Gaussian can be
shared in more than one HMM state or equivalence class. The
improvement reported in [12] suggests the importance of having a
good model structure. This study is related to what we are propos-
ing here in that a Gaussian component can be shared by many
states. On the other hand, the restructuring procedure suggested in
[12] is ad hoc while, as will be shown shortly, the model proposed
here can be put into the EM framework and all the model param-
eters can be estimated simultaneously. The other differentiating
point is that the model proposed here has a hierarchical structure
with two levels of weights.

The rest of the paper is organized as follows. In section 2, we
will derive reestimation formulas for the state to class probabil-
itiesw(rjs) together with conventional HMM parameters within
the EM framework. Then implementation issues will be discussed
before the experimental results on the Switchboard task are pre-
sented Our experiments show that probabilistic clustering HMM
scheme reduces word error rate (WER) by up to1:7% (absolute)
on the Switchboard task when compared with a state-of-art state-
tied system.

2. REESTIMATION FORMULAE

In this section we describe our model and the method to estimate
the model parameters. LetS be the set of HMM states, andR the
set of classes of HMM states. Apart from a normal HMM setup,
a state-class distributionw(rjs) is introduced, wherer 2 R is a
class of HMM states, ands 2 S is an individual HMM state. It is
required that

P
r2R

w(rjs) = 1, sow(�js) is a probability. State-
output distributions,q(�js), are defined in terms of that of classes,



p(�jr); That is,

q(�js) =
X
r2R

w(rjs)p(�jr): (1)

Throughout this paper, a mixture of Gaussian distributions is as-
sumed for each class, or

p(�jr) =

MrX
l=1

mr;lN(�j�r;l;�r;l); (2)

whereMr is the number of Gaussians used for classr, mr;l is
the mixture weight for thelth component and�r;l and�r;l are
Gaussian mean and covariance of thelth mixture component of
classr. We will also use the notationN(�jr; l) to represent the
lth Gaussian of classr. Therefore,q(�js) is a mixture of Gaussian
mixtures.

Let O = fotg
T
1 be a sequence of speech feature vectors,

and S = fStg
T
1 ; R = fRtg

T
1 ; L = fLtg

T
1 be sequences of

HMM states, state classes and mixture labels respectively.S;R
andL consist of hidden variables in this setup. Let� be the total-
ity of HMM parameters,�0 the value before the current iteration.
With these notations, EM [3] auxiliary functionQ(�j�0) can be
expressed as

Q(�j�0) = E[log P (O; S;R; L)jO] (3)

= E[log P (S)jO] +E[logw(RjS)jO] +

E[log P (LjR)jO] +E[log P (OjS; L; R)]: (4)

Similar to Juang’s development in [9] (except that we have one
more level of “branching” probabilityw(rjs)), let

�t(s) = P (o1; � � � ; ot; St = s; �0) (5)

�t(s) = P (oTt+1jSt = s; �0) (6)

be forward and backward probabilities respectively. We also define
the following posterior probabilities


t(s) = P (St = sjO; �0) (7)


t(s; s
0) = P (St = s; St+1 = s0jO; �0) (8)


t(s; r; l) = P (St = s; Rt = r;Lt = ljO; �0) (9)


t(s; r) = P (St = s; Rt = rjO; �0): (10)

For simplicity of notations, the dependence on�0 is not shown on
the left hand sides. The posterior probabilities can be computed
efficiently by the forward-backward algorithm. In particular, since

P (St = s; Rt = r;Lt = l; O; �0)

= P (St = s; Rt = r;Lt = l; o
t
1; �

0)P (oTt+1jSt = s; �0)

=
X
s0

�t�1(s
0)as0sw(rjs)mr;lN(otjr; l)�t(s)

= �t(s)�t(s)
w(rjs)mr;lN(otjr; l)P

x;k w(xjs)mx;kN(otjx; k)
; (11)

we have


t(s; r; l) = P (St = s; Rt = r;Lt = ljO; �0) (12)

=
�t(s)�t(s)

P (O; �0)

w(rjs)mr;lN(otjr; l)P
x;k

w(xjs)mx;kN(otjx; k)

= 
t(s)
w(rjs)mr;lN(otjr; l)P

x;k w(xjs)mx;kN(otjx; k)
(13)

where
t(s) = P (St = sjO; �0) is normal state-occupancy.
With the help of (7-10), (4) can be expressed as

Q(�j�0) =
X
t

X
s0;s


t(s; s
0) log P (s0js) +

X
t

X
s;r;l


t(s; r; l) logw(rjs) +

X
t

X
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t(s; r; l) logmr;l +

X
t

X
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t(s; r; l) log P (otjr; l): (14)

Maximizing (14) will yield the reestimation formulae we are
after. Particularly, maximizing the first term will give us the up-
date formula for state transition probabilities while maximizing the
second to fourth term will give us update formulae for state-class
probabilitiesw(rjs), mixture weightsmr;l and Gaussian means
and covariances respectively. The first three terms of (14) have the
form X

i

ai log xi; (15)

whereai � 0;
P

i
ai > 0 andxi � 0;

P
i
xi = 1. It is easy to

show thatxi = aiP
j aj

maximizes (15). So update formulae for

P (s0js),w(rjs) andmr;l are
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0)P
t
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(16)
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(18)

The last term of (14) can be written asX
t

X
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Maximizing this function is similar to the derivation of maxi-
mum likelihood estimate (MLE) for multi-variate Gaussian distri-
butions [10], and final reestimation formulae are

�̂r;l =

P
t

P
s
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t

P
s 
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(20)

�̂r;l =

P
t

P
s

t(s; r; l)(ot � �̂r;l)(ot � �̂r;l)

0P
t

P
s

t(s; r; l)

: (21)

This completes the derivation of reestimation formulae for the prob-
abilistic classification model.

It is easy to verify that reestimation formulae (16-18) and (20-
21) are consistent with those of a deterministic classification of
HMM states. Note that if a classification of HMM states is deter-
ministic, or

w(rjs) =

�
1; if r = rs
0; otherwise

; (22)



wherers is the class of states, then


t(s; rs; l) = 
t(s)
mrs;lN(otjrs; l)P
k
mrs;kN(otjrs; k)

(23)

and
t(s; r; l) = 0 for all r 6= rs. Plug (23) into (16-18) and
(20-21) and we get normal reestimation formulae.

3. IMPLEMENTATION ISSUES

We address some implementation issues in this section, includ-
ing how to determine classes of HMM states, how to initialize the
state-to-class probabilities and how to train efficiently the entire
set of parameters.

In the derivation in Section 2, it is assumed that the HMM
classesR are known and only state-to-class probabilitiesw(rjs)
and other HMM parameters remain to be estimated. In practice,R
is unknown as well. In this work, we use HTK-based phonetic de-
cision trees [13] to determine HMM classes. This step is described
in [13]. So leaf nodes of these decision trees will represent HMM
classes. At the end of tree constructions, there will be an underly-
ing Gaussian distribution for each leaf node. To obtain an initial
state to class assignment, we compute the distance between the
two underlying Gaussian densities for any leaf node-pair so that
for each leaf nodes, we can order the other leaf nodes based on
the distances. The closest few nodes are chosen as the candidate
HMM classes for HMM states belonging to the leaf nodes. Or in
other words,swill have zero probabilities going to all other HMM
classes.

After this alternation of the acoustic model, a few EM itera-
tions are run to obtain an initial state-to-class probabilitiesfw(rjs)g,
starting from the model with single Gaussians. Then the state-to-
class probabilitiesfw(rjs)g and normal mixture weightsfmr:lg
are collapsed so that full-scale training can be carried out using
HTK. The other advantage of collapsing the two types of weights
is that the decoder can be kept intact.

4. EXPERIMENTS

The test data used in this study is WS97 [5] dev-test set which
consists of 2427 utterances and about 18 thousand words. The
baseline was built in LVCSR WS97 and is a state-tied cross-word
triphone system. The baseline system has about seven thousand
equivalence classes of HMM states and there are 12 Gaussians per
class.

The system implementing the probabilistic clustering of HMM
states is built based on the baseline system. First of all, classes
of HMM states are chosen as leaf nodes in the decision trees of
the baseline system. Initial state-to-class assignments are obtained
by examining the distances between underlying Gaussians, as de-
scribed in Section 3.

no-GMLLR GMLLR
12G(Baseline) 39.4 36.6

12G-PC3 38.0 35.6
12G-PC5 38.2 35.8
24G-PC3 37.7 35.5

Table 1: Comparison of WER of the PCHMM vs. the baseline
system using trigram LM

The new model is used to rescore lattices generated by the
baseline model. Results are tabulated in Table 1 when a trigram
language model is used. The numbers in the second and third
columns are WERs without and with global MLLR [6] speaker
adaptation respectively. The first two digits in the first column de-
note the number of Gaussians per state and the last digit stands
for how many classes a state can belong to with positive proba-
bility. Therefore, “12G-PC3” means there are 12 Gaussians per
class and a state can belong to 3 classes. As seen from the table,
up to1:7% WER reduction is obtained compared with the base-
line system. Note that “12G-PC?” systems have roughly the same
number of parameters as the baseline. In other words,1:4% WER
reduction can be obtained without increasing the number of model
parameters.

A question one may ask is whether the same amount of WER
reduction is achievable by simply increasing the number of Gaus-
sians per state in a tied-state system. To answer this question,
we conducted a series of experiments by changing the number of
Gaussians per state and the results are tabulated in Table 2. Note
that a bigram LM is used to speed up the experiments. The second
through fifth row are results of the state-tied system with various
numbers of Gaussians per state. For instance, “18-G” means that
each state has 18 Gaussians. The last three rows correspond to re-
sults of the systems with probabilistic clustering of HMM states.
The first observation is that the probabilistic clustering systems al-
ways outperform the state-tied systems. The second observation
is that simply increasing the number of Gaussians per state does
not help without speaker adaptation. This is not very surprising
since some of the Gaussians will be poorly estimated as the num-
ber of mixture components increases. The third observation is that
a larger model helps if combined with speaker adaptation. This is
probably because a larger model is likely to match test data bet-
ter after adaptation than a smaller model. The best model reduces
WER by1:7% compared with the state-tied baseline system (i.e,
the 12-G system), and0:7% with the best tied system (the 24-G
system). The best 12-G system reduces WER by1:4% compared
with the 12-G baseline system.

no-GMLLR GMLLR
12-G(Baseline) 41.8 39.1

18-G 41.6 38.6
24-G 41.8 38.1
36-G 42.5 38.8

12-G-PC3 40.3 37.9
12-G-PC5 40.6 37.7
24-G-PC3 40.5 37.4

Table 2: Comparison of WER of the PCHMM vs. state-tied sys-
tems with various number of Gaussian components per state

Before closing this section, we’d like to discuss advantages of
adopting a structural model such as probabilistic clustering. First
of all, the probabilistic clustering scheme makes use of parameters
in a more economic fashion to achieve the same acoustic resolu-
tion as a state-tied system. To be specific, assume that each class
uses 12 Gaussians, and we allow a state to contribute to 3 classes,
then there are 36 Gaussians that have contributions to each state.
We would need 36 Gaussians for each class in a state-tied system
to match this. More Gaussians per state will make it possible to
model in detail distributions that may otherwise be ignored.



Second, allowing a state to contribute to more than one class
also means that a model will be more robust against possible mis-
match or variation between the test and training data than a state-
tying model would be. To illustrate this point, let’s consider the
following example. Say states is assigned to classA in a state-tied
system; and in probabilistic clustering,s has positive probability
of going to both classA andB. Then if test data happens to fall
in to the acoustic regions described by classB, then the state-tied
system is likely to fall apart while the soft-clustering will be able
to handle the variation gracefully. We expect that this kind of a
situation is more likely to be encountered in conversational speech
such as Switchboard than in read speech.

5. CONCLUSIONS

In this paper we have proposed the probabilistic classification of
HMM states, in which scheme a HMM state is assigned to a class
with a probability, and not by fixed rules as in state-tying. The
reestimation formulas for the state-to-class probabilities together
with the Gaussian parameters are derived using the EM algorithm.
A two-step procedure is used to train parameters for probabilisti-
cally clustered HMMs. Significantly better recognition results (up
to 1:7% absolute WER reduction) on the Switchboard task are ob-
tained by using the proposed method.
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