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ABSTRACT

A typical MPEG-2 video encoder requires that DCT and quanti-
zation be performed in most cases. In this paper, we show how
to combine these two steps, reducing sunstantially the number of
computations. The new nonlinear transform is called the Quan-
tized Discrete Cosine Transform, or QDCT. We also introduce a
new method to trade-off the computational complexity and the pre-
cision of the QDCT. Although the QDCT is independent of in-
put data, better trade-offs can be obtained by making it data de-
pendent, which is appropriate in multimediaapplications such as
MPEG-2 video coding. The results presented in this paper can
also be extended to other linear transforms and/or other coding
methods.

1. INTRODUCTION

Most popular techniques for image and video compression are
based on the same hybrid motion compensatedprediction and DCT
video coding method. After the first step of motion compensa-
tion, error (difference) data of image or video are decorrelated by
the Discrete Cosine Transform (DCT)[3]. The transformed co-
efficients are then quantized by a scalar or vector quantizer, al-
though simpler scalar quantization is almost always used. Finally,
the quantized coefficients are coded by an entropy coder.

In this paper, we show how to combine the DCT and the quan-
tization steps into one, thus saving many computations. The new
quantized DCT (QDCT) is targeted for MPEG-2 video encoding,
but the underlying method can also be extended to other linear
transforms and other compression methods as well. The paper is
structured as follows. In Section 2, we derive the simple equa-
tion of the QDCT. In Section 3, we discuss the implementation
of the QDCT using integer arithmetic and its direct application in
MPEG-2 for encoding motion compensated prediction difference
blocks and present some corresponding experimental results. In
Section 4, the computational complexity of QDCT is evaluated
within various implementation frameworks. In Section 5, we in-
troduce a new method to trade-off the number of computations for
quality, espressed here in term of PSNR. The last section presents
some conclusions.

2. QUANTIZED DCT (QDCT)

2.1. One-dimensional QDCT (1D-QDCT)

The 8-point 1D-DCT of(x0; x1; : : : ; x7) is defined by [2]
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Thus, if the scalar quantization process is espressed as

yqk = byk
q
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wherebc denotes the rounding operators, the quantized 1D-DCT
(1D-QDCT) can be attained using
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The corresponding matrix representation yields

Y = CX and (4)

Y
q = bCq

Xc; (5)

whereY,Yq andX are8�1 column vectors,C andCq are8�8
transform matrixes.Cq can be derived fromC for each value of
q, andC can be fully described by 7 parameters (a,b,c,d,e,f,g) as
follows,
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This meansCq is also fully described by the corresponding 7 pa-
rameters:aq = a=q; bq = b=q; : : : ; gq = g=q.



2.2. Two-dimensional QDCT (2D-QDCT)

In a similar manner, we can also write the necessary equations in
the 2D case, using the separability of theunderlying DCT. They
are

Y = CrXC
T
c and (6)

Y
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rX(Cq
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Tc; (7)

whereCq
r andCq

c are the corresponding matrixes for row and
column transforms given by

C
q
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; qr � qc = q:

To use the same coefficients for both row and column transforms,
we should use the same quantization factor, i.e.,

qr = qc =
p
q ;

and haveCq
r=Cq

c=Cq. Equation (7) then becomes

Y
q = bCq

X(Cq)Tc: (8)

3. IMPLEMENTATION OF THE QDCT WITHIN AN
MPEG-2 FRAMEWORK

Until now, we have assumed that the coefficients have high preci-
sion, i.e. they are represented in double floating-point format. In a
practical implementation where integer computations are required,
the coefficients are scaled up to form the integer coefficients. At
the end, the results are scaled down. Let’s assume that the co-
efficients are scaled up to b bits integers. To make the rounding
operation even simpler, we can go one step further and compute
an approximation of (8) as follows

Y
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where each element ofCq is scaled up and rounded to the nearest
integer to produce the corresponding element ofC

q
i , that is,

C
q

i = bCq � 2b + 0:5c:
Although a detailed analysis of this approximation error is still
necessary, we could, in practice, obtain some useful results by just
decreasing b from an initial very high value until the results de-
viate from the ideal case. For MPEG-2 video encoding, setting b
to b = 10 yields virtually no loss in performance. Setting b to
b = 8 introduces a slight error, but this value ofb makes scaling
extremely simple.

As the result of this rounding process, we now have a set of
integer coefficients for each value of quantization scale. The num-
ber of coefficients in the set depends on the specific method used
to implement the QDCT. The computation of QDCT is identical
to the computation of DCT (only replacing the appropriate coeffi-
cients). For instance, if we use Chen’s algorithm [3] to compute
the QDCT, the numbers of coefficients that need to be stored in the
set for each value ofq is 7.

In MPEG-2 video encoding [1], there are two kinds of cod-
ing modes: intra and inter. Intra coded blocks are coded using a
quantization matrix with different values for each position in the
block. Thus, the proposed QDCT cannot be easily applied. How-
ever, inter coded blocks (which represent more than 80% of all

coded blocks) are usually quantized using the same quantization
factor for all coefficients in the block. In this work, we use the
linear quantization scale for MPEG-2 encoding, which means that
the quantization scale qs can take 31 values from 2,4,6,. . . up to
62. If we use Chen’s algorithm for implementation of the QDCT,
the number of coefficients that need to be stored in this case will
be31 � 7 = 217. The values of these coefficients are shown in
Table 1 (these values are with b=10).

qs QDCT coefficients
2 256 355 301 201 71 334 139
4 181 251 213 142 50 237 98
6 148 205 174 116 41 193 80
8 128 178 151 101 35 167 69

. . . . . . . . . . . . . . . . . . . . . . . .
60 47 65 55 37 13 61 25
62 46 64 54 36 13 60 25

Table 1: QDCT coefficients when using Chen’s DCT implementa-
tion

To compare the performance in quality of the combined method
to the traditional method (called DCT+Q in this paper), simulation
experiments are carried out by replacing the DCT and quantization
for inter coded blocks by the QDCT. Averages for all sequences
coded at 3MBps are shown in Table 2.

Method Average PSNR (dB)
DCT+Q (original TM5) 29.67
QDCT (10 bits scaling) 29.68
QDCT (8 bits scaling) 29.65

Table 2: Performance of QDCT compared to DCT+Q

The results show that the QDCT attains the same performance
level as the traditional method, even with 8 bits of scaling.

4. COMPUTATIONAL COMPLEXITY

To compare the computational complexity between the traditional
DCT+Q method and the QDCT, the specific numbers of compu-
tations for the implementation of each method using some well-
known fast algorithms are shown in Table 3 and Table 4. These
tables are adapted from [2]. Within them, 1D means that the trans-
form is separable. M,A and S denote Multiplications, Additions
and Shifts, respectively. We also neglect all the number of shifts
used in the intermediate stages of the fast algorithms, as this is
normally very small. The number of shifts shown in the tables
accounts only for scaling.

One can see that the number of computations are identical for
QDCT and DCT+Q when both are implemented using fast, scaled
algorithms. The reason can be explained as follows. In the tradi-
tional DCT+Q method, if we assume that the computation of an
8� 8 block scaled-DCT requires M, A and S operations, then for
yielding the true DCT coefficients, the corresponding numbers of
operations are M+64,A and S+64. After that, the computation of
quantization requires another 64M and 64S. Thus, the total num-
bers of operations are M+128,A and S+128. However, in scaled
DCT algorithms, scaling to the true DCT coefficients and quanti-
zation are always combined. Therefore, the total numbers of op-
erations is reduced to M+64, A and S+64. On the QDCT side, the



implementation of the QDCT using the same fast, scaled structure
will require M,A and S operations to yield the quantized, scaled
coefficients. Another scaling step is needed to compute the quan-
tized, non-scaled coefficients. This leads to the same numbers of
operations as in the DCT+Q case: M+64,A and S+64.

DCT and Q 1D 2D
M A S M A S

1D Chen 24 26 8 320 416 64
1D LLN 19 29 8 240 464 64

2D Cho,Lee 160 466 64
1D Chen (scaled) 16 26 8 192 416 64

1D Winograd (scaled) 13 29 8 144 464 64
2D Feig,Win. (scaled) 118 462 64

Table 3: Computational complexity of DCT+Q implemented by
various fast algorithms

QDCT 1D 2D
M A S M A S

1D Chen 16 26 8 256 416 64
1D LLN 11 29 8 176 464 64

2D Cho,Lee 96 466 64
1D Chen (scaled) 16 26 8 192 416 64

1D Winograd (scaled) 13 29 8 144 464 64
2D Feig,Win. (scaled) 118 462 64

Table 4: Computational complexity of QDCT implemented by var-
ious fast algorithms

These tables also show that in terms of computational com-
plexity, the QDCT is more efficient than the DCT+Q when it is
implemented using a two-dimensional, non-scaled fast algorithm.
Moreover, the QDCT also has an additional advantage: by embed-
ding the quantization into the transform, the range of the quantized
coefficients will decrease (instead of increase, like after DCT) in
the computational process. This suggests a method to further re-
duce the number of computations, as described in the next section.

5. EARLY TERMINATION AND PREDICTION

5.1. Early Termination

Because the QDCT is the combination of a transform and quanti-
zation, it is expected that the output data (quantized coefficients)
are more localized (i.e., having a more narrow, peaked distribu-
tion). In MPEG-2 inter block encoding, the input data represent
motion compensated prediction error, which is centered narrowly
around zero. Simulation results show that at a bitrate of 3MBps
(which is the bitrate of our interest), 84% of all blocks are inter
coded blocks and 80% of such blocks become zero valued after
quantization. It would greatly save computations if we could de-
tect or predict these blocks in the early computation stages.
Indeed, if the computation of the QDCT is implemented on a row
and column basis, an all-zero check can be made after the row
transforms. If all transformed rows are zero, no further compu-
tations are necessary. This Early Termination technique can be
described compactly by

beginDo 8 row transforms
if block of 8 rows is zero

then exit
elseDo 8 column transforms

whereexit means a8� 8 blockof all zeros is returned. Although
we now have an overhead for the comparison, this overhead is in-
deed rather small compared to the amount of computations for the
QDCT. It’s also not necessary to do the comparison on a coefficient-
to-coefficient basis. For instance, if each coefficient is represented
using 16 bit integer, on 32 or 64 bit CPU we can compare 2 or 4
coefficients in one step. Some other platforms might support even
more efficient mechanisms for detecting an all-zero block.
It is easy to see that by applying Early Termination technique to the
QDCT, the gain in computations is a function of the probability of
the blocks being zero after the row transforms. This probability
Prz, in turn, is a function of the input data characteristics and the
quantization factor. A high value ofPrz yields a low computa-
tional complexity for the implementation of the QDCT using the
Early Termination technique, and vice versa. In MPEG-2 video
encoding, this probability is rather small, as seen in Figure 1(a)
below. One way to increase it is to weight more the quantization
process embedded in the row transforms of the QDCT. This can
be done by setting the value ofqr higher than the value ofqc, e.g.
Krc = qr=qc > 1. In this case, we have to maintain two sets
of QDCT coefficients, one for the row transforms and the other
for the column transforms. Figure 1(a) shows the relation between
Prz andKrc. WhenKrc increases, more coefficients will become
zero after the row transforms and the method also becomes less
precise. WhenKrc ! 1, the loss compared to the ideal case is
approximately 3dB, but no computation is then necessary. This is
the case where the decoder relies totally on motion compensated
prediction.
The trade-off between computational complexity and PSNR is shown
in Figure 1(b). In this figure, the computation gain, or the complex-
ity (represented in %) is normalized as the ratio between the num-
ber of 8-point 1D-QDCT (row or column) actually computed and
the number of 8-point 1D-QDCT if computed using standard row-
column method (which is 16 times the number of coded blocks).
By using this computation measure, we have an accurate evalu-
ation of the computational reduction that is independent of any
specific implementation.
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Figure 1: Trade-offs for Early termination



5.2. Early Prediction

To further reduce the computational complexity, the Early Termi-
nation technique can be generalized to become an Early Prediction
technique as follows:
DoNr row transforms
if block ofNr transformed rows are zero

then exit
elseDo 8 �Nr row transforms for the remaining rows

DoNc column transforms
if block ofNc transformed columns are zero

then exit
elseDo 8�Nc column transforms for the remaining columns

(Nr;Nc = 1 : : : 8)
The Early Termination technique described in Section 5.1 can be
considered as a special case of this method whereNr = Nc = 8.
We now have more degrees of freedom, as all three parameters
Krc, Nr andNc can be changed. To evaluate the trade-off, for
each combination ofKrc, Nr andNc, we simulate to obtain the
corresponding PSNR and the normalized complexity. Then the
results are grouped according toKrc and sorted according to the
complexity. For example, Figure 2(a) shows the simulated results
corresponding toKrc = 8, after these results are sorted in ascend-
ing order of the normalized complexity. A simple filter routine is
used to remove all points that have PSNR value lower than any
PSNR value of other points on their left side. The corresponding
filtered version of the curve in Figure 2(a) is shown in Figure 2(b).
Figure 3 shows the trade-offs corresponding toKrc=2. . . 32. The
dashed curve represents the overall optimum trade-off. It is formed
by mixing the data of all other curves, then sorting and filtering as
desribed above. Each point on this curve represents a triplet (Krc,
Nr, Nc). Some of these triplets are shown in Table 5. The per-
formance of the optimum trade-off in this case is apparently better
than the one shown in Figure 1(b). This is reasonable because with
Nr andNc, we have two more degrees of freedom in choosing the
optimal set of parameters.
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Figure 2: Trade-offs for all values ofNr andNc whenKrc = 8

PSNR(dB) Compl. Krc Nr Nc

29.6 72 1 4 4
29.5 46 2 1 2
29.4 40 4 1 3
29.1 31 8 1 2
28.5 19 32 1 4

Table 5: Some values derived from the dashed curve in Figure 3
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Figure 3: Trade-offs for variousKrc;Nr andNc

It is clear that one can choose a specific triplet of (Krc,Nr,Nc)
to minimize the computational complexity corresponding to a tol-
erable loss of quality, or from a fixed, constrained number of com-
putational complexity, choose the right triplet to maximize the
PSNR.

6. CONCLUSIONS

A new technique for the combination of DCT and quantization,
namely Quantized Discrete Cosine Transform (QDCT), is presented.
The QDCT implementation using integer coefficients can be used
with general purpose CPU or DSP chips. In this case, it yields
virtually no loss compared to the traditional method of separated
DCT and quantization. For time-constrained applications where
trade-offs between complexity and quality are desired, we intro-
duce a new method for early prediction of zero blocks. Optimum
parameters for this method can be obtained off-line, as demon-
strated in this paper.
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