
A REALTIME SOFTWARE MPEG TRANSCODER USING A NOVEL MOTION
VECTOR REUSE AND A SIMD OPTIMIZATION TECHNIQUES

Yuzo Senda and Hidenobu Harasaki

C&C Media Research Laboratories, NEC Corporation
1-1, Miyazaki 4-chome, Miyamae-ku, Kawasaki 216-8555 JAPAN

Email: yuzo@ccm.CL.nec.co.jp

ABSTRACT

A realtime software MPEG transcoder has been de-
veloped. A novel motion vector reuse and a SIMD
optimization techniques are introduced to accelerate
the transcoder without any quality degradation. Mean
absolute error approximation criteria are employed in
the reuse technique to refine scaled motion vectors.
The developed transcoder on Pentium II 266MHz runs
2.5 times as fast as realtime, when scaling an MPEG-1
bitstream to half size.

1. INTRODUCTION

Video distribution and retrieval services over the Inter-
net and intranets are becoming popular. As these net-
works do not guarantee effective transfer rate, video
server must have an ability to adapt the transfer rate
change. A scalable encoding method seems to be a
promising solution, however, the method cannot be
used easily because of its complexity and peculiarity.
MPEG-1 [1] is widely used instead. There are a lot of
hardware decoders available in the market. Moreover,
operating systems bundle software decoders. Though
MPEG-1 does not support scalability, transfer rate
adaptation is achievable by providing multiple bitrate
bitstreams. If a server could serve multirate bitstreams,
each client can select and play a bitstream suitable upon
network condition and its decoding power.

Cost vs. quality tradeoff exists in generating mul-
tirate bitstreams. When placing a hardware encoder
for each bitstreams, the cost increases proportionally
to the number of supported bitstreams, while the pic-
ture quality of each bitstream maintains optimum. A
single processor cannot generate all bitstreams by soft-
ware in realtime. To archive cost effective and high
quality multirate encoder, we employ a cascade com-
bination of hardware encoder and software multirate
transcoder. This is because the hardware maximizes
the picture quality by its large area motion estimation
and software transcoder helps to minimize the total en-

coder system cost. In some cases, realtime transcoding
is not required. For example, in a video on demand
(VOD) service, an offline transcoder may be used to
generate subordinate bitstreams. However, a realtime
transcoder is necessary for providing a live broadcast-
ing service.

Recently, general purpose processors employ SIMD
instructions for multimedia processing. Utilizing the
instructions, a realtime software MPEG-2 decoder has
been developed [2]. By applying the software imple-
mentation technique employed in the decoder and a
novel motion vector reuse technique, we have devel-
oped a realtime software MPEG-1 transcoder. This
paper explains the techniques and evaluates the perfor-
mance of the developed transcoder.

2. PROPOSED TRANSCODING METHOD

Figure 1 shows a block diagram of a video broadcast-
ing system. A hardware encoder first generates the
reference bitstream from an input video signal. A soft-
ware multirate transcoder then decodes the reference

Hardware
Encoder

Software Multirate Transcoder

Partial
Decoder

Partial
Encoder

Picture
Scaling

Partial
Encoder

Header Information

Video
Server

Pic. Scal.

Pic. Scal.

Part. Enc.

Part. Enc.

Part. Enc.

Part. Enc.

Figure 1: A video broadcasting system employing a
software multirate transcoder



SITVD

MC

IQ

Decoding Process Scaling Process

VS

T Q

MC

IQ

IT

VC

Encoding Process

Header Information

VD: Variable Length Decoder

IQ: Inverse Quantiser

IT: Inverse DCT

MC: MC Predictor

S: Picture Scaler

VS: Motion Vector Scaler

T: DCT

Q: Quantiser

VC: Variable Length Coder

Figure 2: The block diagram of a video transcoder

bitstream, generates a down-scaled picture, and re-
encodes it with a lower bitrate. A video server finally
broadcasts the bitstreams to a network.

A DCT domain processing is known as a fast
transcoding method [3]. The method statistically re-
duces the number of operations. Since the method
needs two bytes to represent a pel, the necessary mem-
ory access bandwidth for a motion compensated pre-
dictor (MC) becomes twice as much. In video pro-
cessing with a general purpose processor, the memory
bandwidth is a bottleneck [4, 5]. So the DCT do-
main processing is not suitable for this application.
An ordinary spatial domain processing is adopted in
our transcoder.

In transcoding without spatial scaling, a decoding
and an encoding processes can share the MC [6, 7].
This paper, however, proposes cascade processes of a
decoding, a scaling and an encoding shown in Figure 2.
The difference in data path from a simple concatenation
of the processes is elimination of frame reordering.
The elimination reduces both necessary memory size
and processing delay.

2.1. Reuse of Motion Vectors

Motion estimation can be significantly simplified when
utilizing the motion vectors contained in the reference
bitstream. The usage of simply scaled motion vectors
for transcoding with spatial scaling results in serious
quality degradation [8]. To avoid it, our transcoder
evaluates scaled motion vectors and their neighbors,
and then selects the best ones. Figure 3 shows an ex-
ample. In 1/2 scaling, four macroblocks in the decoded
picture are corresponding to a macroblock in the en-
coding picture. The transcoder uses 1/2 scaled motion
vectors as candidates.

It is easy to compute the mean absolute error (MAE)
of an integer motion vector by direct block matching.
However, the MAE computation for a non-integer mo-
tion vector costs several times as much as for an inte-

1/2 Scaling

MV Reuse

Figure 3: Reuse of motion vectors

ger one because of half-pel interpolation. To reduce
the cost, approximate criteria [9, 10] are introduced.
With the criteria, the MAEs of half-pel motion vec-
tors as well as that of interpolative prediction can be
evaluated by following simple equations.

Ẽi+0:5;j =
7
16

(Ei;j + Ei+1;j) ; (1)

Ẽi;j+0:5 =
7
16

(Ei;j + Ei;j+1) ; (2)

Ẽi+0:5;j+0:5 =
13
64

(Ei;j + Ei+1;j +

Ei;j+1 + Ei+1;j+1) ; (3)

Ẽintp =
7
16

(Eforw + Ebackw) ; (4)

where Ei;j is the MAE of an integer motion vector
(i; j), Ẽ is the estimated MAE, Eforw and Ebackw are
the MAEs of forward and backward prediction, Ẽintp

is the estimated MAE of interpolative prediction. As
a result, predicted picture generation for evaluation is
eliminated.

To reduce the number of candidate motion vectors
to be evaluated, following categories are introduced.

(a) When both the horizontal and the vertical com-
ponents of a scaled motion vector are integer,
only the MAE of the vector is computed.

(b) When either of the components is non-integer,
the MAEs of neighboring two integer motion
vectors are computed. The MAE of the half-pel
motion vector between the two is then estimated
with the criteria.

(c) When both of the components are non-integer,
the MAEs of neighboring four integer motion
vectors are computed. The MAEs of the five
half-pel motion vectors surrounded by the four
are then estimated with the criteria.



Scaled MV Scaled MV Scaled MV

(a) (c)(b)

Figure 4: Three categories of scaled motion vectors
and their search ranges

Figure 4 shows the three categories and their search
ranges. Block matching is carried out only for solid-
circle markers which mean integer candidate motion
vectors. The approximate criteria are applied to cross
markers which mean non-integer candidate ones. The
search range depends on a scaled motion vector.

2.2. Implementation

Our transcoder also employs the software implemen-
tation techniques introduced to a realtime software
MPEG-2 decoder [2]. One is a SIMD optimization
technique. DCT and IDCT takes a large number of
computations, so they were considered as the bottle-
neck of multimedia processing. Since general pur-
pose processors have employed SIMD instructions for
multimedia processing, DCT and IDCT are no longer
intensive for the processors. For example, four coef-
ficients can be processed in parallel by using Intel’s
MMX technology [11, 12]. Processing time is then
reduced to one quarter at the best. The MC accesses
reference pictures by eight pels, and generates half-
pel and interpolative predicted pictures by four pels.
Since MPEG-1 generally handles one quarter resolu-
tion of MPEG-2, all data can be located on the L2 cache
of the processor. Therefore, the MPEG-1 transcoder
does not pay a cache miss penalty, which is still a large
problem in the MPEG-2 decoder.

Another technique is a concurrent variable length
decoder (VLD) [13]. It is not easy to decode a variable
length code in parallel because the start position of
a variable length code depends on its previous code
[14]. In other words, VLD is a sequential process. To
accelerate VLD, two symbol concurrent decoding is
introduced. The current decoding is applicable only
for two successive short codes. Our VLD runs twice
as fast as a conventional one at the maximum.

3. PERFORMANCE

The implemented techniques are evaluated in this sec-
tion. A video CD (1.15Mbps, 352 pels, 240 lines,29.97

Hz) is used as the reference bitstream. The transcoder
runs on Intel Pentium II 266 MHz, and generates a
spatially half scaled bitstream (384 Kbps). Figure 5
shows the average processing time of a one-second
piece of the bitstream. The accelerating ratios are 4.0
with the motion vector reuse technique, 4.9 with the
software implementation technique, and 14.0 with both
techniques. Compared with the period of a piece, the
transcoder runs 2.5 times as fast as realtime. Figure
6 shows the detail of the processing time. In general,
simplification leads degradation, however, the motion
vector reuse technique improves +0.03 dB in SNR.
Therefore, the technique does not cause any quality
degradation.

Even when the average processing time is less than
one second, processing time for each frame depends
on the bitstream. The above result does not guarantee
realtime transcoding with a frame period delay. Figure
7 shows the distribution of processing time measured
with 0.01-second accuracy. The transcoder takes 0.39
seconds in average, however, 0.5 seconds in the worst
case. To guarantee realtime software transcoding in a
minimum processing delay, emergency processing is
necessary to avoid an overrun. However, emergency
processing usually causes significant quality degrada-
tion. When assuming processing time histogram as
a normal distribution, overtime probability can theo-
retically be defined by the average � and the standard
deviation� of processing time. In processing the video
CD, �=0:392 and �=0:040. To avoid degradation oc-

5.46

0.39

1 2 3 4 50

No

Average Processing Time (sec)

1.11

1.38

MV
Reuse SIMD

No

Yes

Yes

No

Yes

No

Yes

Figure 5: Average processing time in video transcod-
ing with or without the proposed techniques

Decoding Scaling EncodingMV refinement Misc

46.1% 3.9% 32.5%16.9% 0.6%

Figure 6: Percentage of processing time in video
transcoding with the proposed techniques



400

300

200

100

0

0.25 0.400.350.30 0.550.500.45

Processing time for 30 frames (sec)

F
re

qu
en

cy
 o

f O
cc

ur
re

nc
e

Figure 7: Distribution of processing time for 30 frames

currence, � + 3� second processor time is allocated
for transcoding of each piece. Another approach to
ensure realtime processing is to enlarge buffers to ab-
sorb fluctuation of processing time. In other word,
buffering delay is introduced to guarantee the realtime
processing. Assuming processing time is a first order
autoregressive process, the average�n and the standard
deviation �n of processing time of n pieces are

�n = n� (5)

�n = �

vuutn +

n�1X
i=1

2(n� i) �i (6)

where � is an autocorrelation factor, 0.625 in the video
CD. When n=3 as an example, �n is 2:506�, not 3�.
Consequently, the buffer enlargement has an effect to
reduce �.

4. CONCLUSION

A realtime software MPEG transcoder has been de-
veloped. Introduced motion vector reuse and SIMD
optimization techniques accelerates the transcoder 14
times as fast as a straight forward implementation.
Both techniques do not introduce any quality degra-
dation. When scaling an MPEG-1 bitstream to half
size, the transcoder on Pentium II 266MHz runs 2.5
times as fast as realtime. The transcoder has been em-
ployed in our multimedia-on-demand system namely
HYPERMS-Lite.

5. REFERENCES

[1] ISO-IEC/JTC1/SC29/WG11, “Coding of moving pic-
tures and associated audio for digital storage media at
up to about 1.5 Mbit/s”, IS11172 (1992)

[2] M. Ikekawa, D. Ishii, E. Murata, K. Numata,
Y. Takamizawa, M. Tanaka, “A Real-time Software
MPEG-2 Decoder for Multimedia PCs”, ICCE-97,
WAM 1.1, pp. 2-3 (1997)

[3] S.-F. Chang, D. G. Messerschmitt, “Manipulation and
Compositing of MC-DCT Compressed Video”, IEEE
JSAC, Vol. 13, No. 1, pp. 1-11 (Jan. 1995)

[4] D. F. Zucker, M. J. Flynn, R. B. Lee, “Improving
Performance for Software MPEG Players”, COMP-
CON’96, pp. 327-332 (Feb. 1996)

[5] K. Nadehara, H. Lieske, I. Kuroda, “Software MPEG-2
Video Decoder on a 200-MHz, Low-Power Multime-
dia Microprocessor”, ICASSP-98, Vol. 5, pp. 3141-
3144 (May 1998)

[6] D. G. Morrison, M. E. Nilsson, M. Ghanbari, “Reduc-
tion of the bit-rate of compressed video while in its
coding form”, Packet Video, D17.1 (Sep. 1994)

[7] G. Keensman, R. Hellinghuizen, F. Hoeksema, G. Hei-
deman, “Transcoding of MPEG bitstreams”, Signal
Processing: Image Communication, Vol. 8, No. 6, pp.
481-500 (Sep. 1996)

[8] N. Bjork, C. Christopoulos, “Transcoder Architecture
for Video Coding”, IEEE Trans. Consumer Electron-
ics, Vol. 44, No. 1, pp. 88-98 (Feb. 1998)

[9] Y. Senda, H. Harasaki, M. Yano, “A Simplified Motion
Estimation Using an Approximation for the Real-Time
MPEG-2 Encoder”, ICASSP-95, Vol. 4, pp. 2273-2276
(May 1995)

[10] Y. Senda, H. Harasaki, M. Yano, “Theoretical Back-
ground and Improvement of a Simplified Half-Pel Mo-
tion Estimation,” ICIP-96, Vol.3, pp.263-266 (Sep.
1996)

[11] Intel, “Intel Architecture MMX(TM) Technology, Pro-
grammer’s Reference Manual”, Order No. 243007-001
(Mar. 1996)

[12] E. Murata, M. Ikekawa, I. Kuroda, “Fast 2D IDCT Im-
plementation with Multimedia Instructions for a Soft-
ware MPEG2 Decoder”, ICASSP-98, Vol. 5, pp. 3105-
3108 (May 1998)

[13] D. Ishii, M. Ikekawa, I. Kuroda, “Parallel Variable
Length Decoding with Inverse Quantization for Soft-
ware MPEG-2 Decoders”, SiPS-97, pp. 500-509 (Nov.
1997)

[14] E. Holmann, A. Yamada, T. Yoshida, S. Uramoto,
“Real-Time MPEG-2 Software Decoding with a Dual-
Issue RISC Processor”, VLSI Signal Processing IX,
pp. 105-114, (Oct. 1996)


