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ABSTRACT

This paper considers the classical Shannon sampling theorem
in multiresolution spaceswith scaling functions as interpolants. As
discussed by Xia and Zhang, for an orthogonal scaling function to
support such a sampling theorem, the scaling function must be car-
dinal. They also showed that the only orthogonal scaling function
that is both cardinal and of compact support is the Haar function,
which has only 1 vanishing moment and is not continuous. This
paper addresses the same question, but in the multiwavelet con-
text, where the situation is different. This paper presents the con-
struction of orthogonal multiscaling functions that are simultane-
ously cardinal, of compact support, and have more than one van-
ishing moment. The scaling functions thereby support a Shannon-
like sampling theorem. Such wavelet bases are appealing because
the initialization of the discrete wavelet transform (prefiltering) is
the identity operator — the projection of a function onto the scaling
space is given by its samples.

1. INTRODUCTION

The sampling theorem of Shannon et al for band-limited signals
is one of the cornerstones of signal processing and communication
theory. Indeed, the representation of a function by its samples is an
important question with a long history. While the Shannon sam-
pling theorem is based on band-limited signals, it is natural to in-
vestigate other signal classes for which a sampling theorem holds.
The assumption that a signal is band-limited, although eminently
useful, is not always realistic. Note that (i) band-limited signals are
of infinite duration, and (ii) the sinc function, used to reconstruct a
band-limited function from its samples, is of infinite support and
decays only as j1=xj. Because of the importance in analyzing and
detecting transients and singularities, we are particularly interested
in sampling theorems for signals of finite duration, and for which
the reconstruction function is also of compact support.

To this end, note that the sinc function is one of the primary ex-
amples of an orthogonal scaling function from the theory of wavelet
bases. The sinc function generates a scaling spaceV in the context
of multiresolution analysis and serves as the interpolant in the con-
text of the sampling theorem. The question naturally arises — are
there orthogonal wavelet bases for which the scaling function both
(i) supports a sampling theorem in the same fashion and (ii) is of
compact support? Unfortunately, the Haar scaling function is the
only orthogonal scaling function of compact support for which a
Shannon-like sampling property holds, as proven in [15].

This paper takes up the same question, but in the context of
multiwavelet bases (wavelet basesbased on more than a single scal-
ing function), where the situation is different. In this paper it is
shown, via the construction of examples, that for orthogonal mul-
tiwavelet bases it is possible for the scaling functions to achieve
simultaneously the sampling property, compact support, and more
than one vanishing moment.

A variety of results regarding wavelet bases and sampling the-
orems have been described. Walter has given a sampling theorem
describing the reconstruction of a function f in a scaling space V
from its samples [14]. Walter’s theorem does not require that the
scaling function �(t) be cardinal (interpolatory, see below), how-
ever, the interpolant is generally not the same function as the scal-
ing function. Aldroubi and Unser have also consideredwavelet sam-
pling and the role of cardinal scaling functions, especially in the
context of biorthogonal bases [1]. The notion of scale-limited sig-
nals and the issue of translation invariance in wavelet sampling is
discussed in [6].

2. PRELIMINARIES

Through the paper, t is real, and n is integer.
From the classical Shannon sampling theorem, if f(t) is band-

limited to (��; �) then

f(t) =
X
n

f(n) sinc(t� n)

where sinc(t) = sin(�t)
�t

:
An important property of the sinc function is that it is a cardinal

function. A function �(t) is said to be a cardinal function if

�(n) = �(n) =

�
1; for n = 0
0; for n = �1;�2; : : :

Cardinal functions take the value 0 on the nonzero integers, and
take the value 1 at t = 0.

From the theory of wavelet bases, a function �(t) is said to be
an orthogonal scaling function if

1. �(t) satisfies a dilation equation:

�(t) =
p
2
X
n

h(n) �(2t� n)

(h(n) is known as the scaling filter.)



2. �(t) is orthogonal to its integer shifts:Z
�(t)�(t� n)dt = �(n)

The sinc function is such a function, with the additional property
that it is cardinal [14]. The sinc function is a cardinal orthogonal
scaling function, or COSF.

From the theory of wavelet bases, the scaling space Vj(�) as-
sociated with a scaling function �(t) is

Vj(�) = Span
n

f�(2jt� n)g:

The Shannon sampling theorem can then be stated in the wavelet
context. Let �(t) be the sinc function. If f(t) 2 V0(�), then

f(t) =
X
n

f(n)�(t� n)

Does the sampling theorem hold for other�(t)? It is shown in [15],
that the sampling property holds for an orthogonal scaling function
�(t), if and only if �(t) is also cardinal. Therefore, every cardinal
orthogonal scaling function yields a sampling theorem. The Shan-
non sampling theorem for band-limited signals is the special case
obtained using the sinc function.

An important question arises — do there exist cardinal orthog-
onal scaling functions of compact support? The answer is yes: the
Haar function is one example. However, as mentioned in the Intro-
duction, there are no others [15]. The orthogonal scaling functions
of Daubechies are not cardinal. The Haar function is the only car-
dinal orthogonal scaling function of compact support.

2.1. Halfband Filters

It is convenientto characterizea compactly supported COSF in terms
of the scaling filter h. Recall first the definition of a halfband filter.
h(n) is halfband if h(2n) = c��(n) for some nonzero c. Halfband
filters take the value 0 on the even integers, except at n = 0.

Let r(n) denote the autocorrelation sequence of h(n). r(n) =P
k h(k)h(k + n). For h(n) to generate an orthogonal scaling

function �(t), it is necessary that r(n) be halfband, r(2n) = �(n)
[3]. On the other hand, for a scaling filter h(n) to generate a car-
dinal scaling function �(t), it is necessary that h(n) be halfband,
h(2n) = 1p

2
�(n) [15]. Hence, for h(n) to generate a scaling func-

tion that is both cardinal and orthogonal, it is necessary that both
h(n) and r(n) be halfband.

The Haar function is the only COSF of compact support be-
cause the only appropriate FIR halfband filters h(n) whose auto-
correlation function are also halfband, are filters having 2 nonzero
coefficients. Other examples of COSFs are given in [10, 15]. The
paper [15] describes COSFs based on IIR scaling filters h(n); al-
though they are not of compact support, their decay is exponential.
Note in addition that scaling functions basedon scaling filters of the
form H(z) = A(z2) + z�(2d+1), where A(z) is allpass, are car-
dinal because such scaling filters are halfband (up to a shift). The
scaling function in Figure 2 of [10] is therefore a COSF. Although
not of compact support, it’s decay is exponential.

3. MULTIWAVELET BASES AND THE SAMPLING
THEOREM

Multiwavelet bases have received much attention since 1994 when
it was shown by example in [4, 5] that symmetry, orthogonality,

compact support and approximation order K > 1 can be simul-
taneously achieved, which is not possible in the traditional scalar
wavelet case.

In this paper, we show that using multiwavelet bases it is pos-
sible to achieve simultaneously cardinality, orthogonality, compact
support, and approximation orderK > 1. That is, there exist mul-
tiwavelet orthogonal scaling functions of compact support and ap-
proximation orderK > 1 for which a Shannon-like sampling prop-
erty holds, which is not possible in the scalar wavelet case.

Multiwavelet bases are wavelet bases based on several scaling
and wavelet functions. This paper considers multiwavelet bases
based on 2 scaling functions �0(t), �1(t) and 2 wavelet functions
 0(t),  1(t). Accordingly, there are 2 scaling filters h0(n), h1(n)
and 2 wavelet filters h2(n), h3(n).

The functions �0(t); �1(t) are orthogonal multiscaling func-
tions if

1. �0(t);�1(t) satisfy a matrix dilation equation

�(t) =
p
2
X
n

C(n)�(2t� n)

where �(t) = (�0(t); �1(t))
t, and C(n) are 2 by 2 matri-

ces.

2. �0(t);�1(t) are orthogonal to their integer shifts.

Z
�i(t)�j(t � n)dt = �(i� j) � �(n)

The notation forC(n) used in this paper is [C(n)]i;j = hi(2n+j):
For example

C(0) =

�
h0(0) h0(1)
h1(0) h1(1)

�
; C(1) =

�
h0(2) h0(3)
h1(2) h1(3)

�
;

etc, where h0(n) and h1(n) are the two scaling filters.
The scaling space Vj(�0; �1) is given by

Vj(�0; �1) = Span
n

f�0(2jt� n); �1(2
jt� n)g:

The functions �0(t), �1(t) will be called cardinal if

�0(n=2) = �(n)

�1(n=2) = �(n� 1):

Except for t = 0, �0(t) takes the value 0 on the half integers, and
except for t = 1

2 so does �1(t).
A version of the sampling theorem, for the multiwavelet case,

is straightforward.
Let�0(t), �1(t) be cardinal orthogonalmultiscaling functions.

If f(t) 2 V0(�0; �1), then

f(t) =
X
n

f(n)�0(t� n) + f(n+ 1=2) �1(t� n)

Shannon sampling using the sinc function can be expressed in this
form using �0(t) = sinc(2t), �1(t) = sinc(2t� 1).

The question becomes: do there exist cardinal orthogonalmulti-
scaling functions �0(t), �1(t) of compact support and approxima-
tion order K > 1? Yes. In Section 5, examples of such functions
will be given.



4. BALANCE ORDER

For traditional wavelet bases, the approximation orderK is an im-
portant measure of how well the discrete-time wavelet transform
(DWT) compressessmooth signals1. Indeed, for waveletbasesbased
on a single scaling function, the filter bank associated with the ba-
sis inherits the approximation properties of the basis. However, in
the multiwavelet case, the situation is different. For multiwavelet
bases, the filter bank does not inherit the approximation properties
of the basis [11].

To be specific, the lowpass/highpasschannels, of the filter bank
associated with a traditional wavelet basis of approximation order
K , preserve/annihilate the setPK�1 of polynomials of degree k <
K . However, in the multiwavelet case, for the preservation/ annihi-
lation properties, it in not sufficient that the multiwavelet basis have
approximation order2 K . A stronger condition is required. Multi-
wavelet bases for which the zero moment properties do carry over
to the discrete-time filter bank are called balanced after Lebrun and
Vetterli [8, 9].

Specifically, multiwavelet bases for which the associated filter
bank preserves/annihilates the set PK�1 of polynomials of degree
k < K are said to be order-K balanced. See [8, 9, 11, 12] for fur-
ther details. For discrete-time signal processing, the order of bal-
ancing is more useful than the weaker order of approximation.

From [11], the condition for order-1 balancing for multiwavelet
bases is

(z�3 + z�2 + z�1 + 1) divides H0(z) +H1(z): (1)

Order-1 balancedmultiwavelet filter bankspreserve/annihilate con-
stant signals. From [11], the condition for order-2 balancing is

(z�3+z�2+z�1+1)2 divides H0(z) +

�
3� z�4

2

�
H1(z):

(2)

Order-2 balancedmultiwavelets filter banks preserve/annihilate ramp
and constant signals. The examples to be given in Section 5 will be
balanced up to their approximation order.

5. CARDINAL MULTIWAVELET BASES

To obtain cardinal orthogonal multiscaling functions, it is useful to
characterize them in terms of the scaling filters h0 and h1. For h0 ,
h1 to generate orthogonal scaling functions �0; �1, it is necessary
that h0 and h1 be orthogonal to their shifts by 4:

X
n

hi(n)hj(n + 4k) = �(i� j) � �(k) (3)

The scaling functions�0, and�1 presentedbelow are based on scal-
ing filters h0 and h1 possessing a particular structure.

5.1. Order-2 Balanced Example

An order-2 balanced cardinal orthogonal system was obtained with
scaling functions supported on [0; 5] and scaling filters of length 11.

1If
R
tk (t)dt = 0 for k = 0; : : : ;K � 1 (and not for k = K) then

the wavelet basis is said to have approximation orderK.
2If

R
tk i(t)dt = 0 for i = 0;1 and k = 0; : : : ;K � 1 (and not for

k = K) then the multiwavelet basis is said to have approximation order
K.

The scaling filters have the form

h0(n) =
1p
2
( a; 0; b; 1; c; 0; d; 0; e; 0; f)

(4)

h1(n) =
1p
2
(�f; 0; e; 0;�d; 1; c; 0;�b; 0; a)

(5)

With this form, orthogonality between h0 and h1 is structurally in-
corporated. It is necessary only to choose the parameters so that h0
is orthogonal to its own shifts by 4. The remaining free parameters
will be used to attain balance orderK > 1.

Our problem is to find a; : : : ; f such that h0 and h1 in (4,5)
satisfy the orthogonality conditions (3) and the second order bal-
ancing conditions (2). This is a system of nonlinear equations —
the balancing conditions (2) are linear, but the orthogonality con-
ditions (3) are quadratic. The following solutions to this system of
nonlinear equations were obtained using a lexical Gröbner basis [2]
(for the computation of which, the software Singular was employed
[7]).

A = �1=8 �
p
15=32

a = 1=32

b = A+ 1=4

c = 15=16

d = �2A� 1=4

e = 1=32

f = A

As indicated, 2 solutions exist, however only one of them yields
acceptable scaling functions, namelyA = �1=8+

p
15=32. That

solution is shown in Figure 1. Note that �0; �1 shown in the fig-
ure are actually shifted cardinal functions, �0(3=2) = 1 instead of
�0(0) = 1, etc.
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Figure 1: Order-2 balanced cardinal orthogonal scaling functions
�0(t) and �1(t), with A = �1=8+

p
15=32. The support of each

is [0; 5].



The wavelet filters h2, h3 are given by

h2(n) =
1p
2
(�a; 0;�b; 1;�c; 0;�d; 0;�e; 0;�f)

(6)

h3(n) =
1p
2
( f; 0;�e; 0; d; 1;�c; 0; b; 0;�a);

(7)

for n = 0; : : : ; 10. All four analysis filters are obtained from the
single prototype filter h0. The special structure for h0; h1; h2; h3
guarantees orthogonality (3) provided that h0 is orthogonal to its
shifts by 4.

The wavelets  0(t) and  1(t) are shown in Figure 2
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Figure 2: Order-2 balanced wavelet functions  0(t) and  1(t),
corresponding to the scaling functions shown in Figure 1. Like
�0; �1, the wavelets  0;  1 are cardinal.

6. DISCUSSION

The use of cardinal wavelet bases also simplifies the initialization
step of the discrete wavelet transform. That is the estimation of the
the fine scale wavelet coefficients from the samples of a function
— the estimation of

R
f(t)�(t� n)dt from f(n). (See [13] for an

overview of initialization methods.) However, with cardinal (or in-
terpolating) scaling functions no such initialization step is needed.
The samples f(n) are themselves the values sought.

It must be noted that if a signalf(t) lies in a scaling spaceV (�)
or V (�0; �1), then generally there are translations f(t� T ) of the
function that do not lie in the scaling space. Hence, in the multires-
olution context there is a loss of shift-invariance, which occurs in
both the wavelet and the multiwavelet cases. The requirement that
a function and all its shifts lie in the same scaling space is very re-
strictive for sampling theorems, as discussed in [6].

7. CONCLUSION

The sampling issue has long been a concern in wavelets, both in
theory and in practice. Obtaining wavelet coefficients from a sam-
pled signal has previously required approximation or prefiltering.

However, with the new cardinal multiwavelet basis, interpolation
and sampling issues are address without departing from orthogonal
FIR multirate systems.
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