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ABSTRACT

This paper considers the classical Shannon sampling theorem
in multiresolution spaceswith scaling functionsasinterpolants. As
discussed by Xia and Zhang, for an orthogonal scaling function to
support such asampling theorem, the scaling function must be car-
dinal. They also showed that the only orthogonal scaling function
that is both cardinal and of compact support is the Haar function,
which has only 1 vanishing moment and is not continuous. This
paper addresses the same question, but in the multiwavelet con-
text, where the situation is different. This paper presents the con-
struction of orthogonal multiscaling functions that are simultane-
ously cardinal, of compact support, and have more than one van-
ishing moment. The scaling functions thereby support a Shannon-
like sampling theorem. Such wavelet bases are appealing because
the initialization of the discrete wavelet transform (prefiltering) is
theidentity operator — the projection of afunction onto thescaling
spaceis given by its samples.

1. INTRODUCTION

The sampling theorem of Shannon et al for band-limited signals
is one of the cornerstonesof signal processing and communication
theory. Indeed, the representation of afunction by its samplesisan
important question with a long history. While the Shannon sam-
pling theorem is based on band-limited signals, it is natural to in-
vestigate other signal classesfor which a sampling theorem holds.
The assumption that a signal is band-limited, although eminently
useful, isnot alwaysrealistic. Notethat (i) band-limited signalsare
of infinite duration, and (ii) the sinc function, used to reconstruct a
band-limited function from its samples, is of infinite support and
decaysonly as|1/x|. Because of the importance in analyzing and
detecting transientsand singularities, we are particularly interested
in sampling theorems for signals of finite duration, and for which
the reconstruction function is also of compact support.

To this end, notethat the sinc function is one of the primary ex-
amplesof an orthogonal scaling function from thetheory of wavelet
bases. The sinc function generatesascaling space V' in the context
of multiresolution analysis and servesastheinterpolant in the con-
text of the sampling theorem. The question naturally arises— are
there orthogonal wavelet basesfor which the scaling function both
(i) supports a sampling theorem in the same fashion and (ii) is of
compact support? Unfortunately, the Haar scaling function is the
only orthogonal scaling function of compact support for which a
Shannon-like sampling property holds, as provenin [15].

This paper takes up the same question, but in the context of
multiwavel et bases(wavel et basesbased on more than asinglescal-
ing function), where the situation is different. In this paper it is
shown, viathe construction of examples, that for orthogonal mul-
tiwavelet bases it is possible for the scaling functions to achieve
simultaneously the sampling property, compact support, and more
than one vanishing moment.

A variety of results regarding wavelet bases and sampling the-
orems have been described. Walter has given a sampling theorem
describing the reconstruction of afunction f in a scaling space V'
from its samples [14]. Walter's theorem does not require that the
scaling function ¢(¢) be cardinal (interpolatory, see below), how-
ever, the interpolant is generally not the same function as the scal-
ing function. Aldroubi and Unser haveal so consideredwavel et sam-
pling and the role of cardinal scaling functions, especialy in the
context of biorthogonal bases[1]. The notion of scale-limited sig-
nals and the issue of translation invariance in wavelet sampling is
discussedin [6].

2. PRELIMINARIES

Through the paper, ¢ isreal, and » isinteger.
From the classical Shannon sampling theorem, if f(¢) isband-
limited to (—, «) then

F(0) =" fln)sinc(t - n)

wheresinc(t) = 220,
Animportant property of thesinc functionisthat it isacardinal

function. A function ¢(¢t) is said to be a cardinal function if

1, forn=0
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Cardinal functions take the value 0 on the nonzero integers, and
takethevaluelat ¢t = 0.

From the theory of wavelet bases, a function ¢(¢) is said to be
an orthogonal scaling function if

1. ¢(¢) satisfiesadilation equation:

8(1) = V23" h(n) (2t —n)

(h(=n) is known asthe scaling filter.)



2. ¢(t) isorthogonal to itsinteger shifts:
Jotwote—nya=s(a)

The sinc function is such a function, with the additional property
that it is cardinal [14]. The sinc function is a cardinal orthogonal
scaling function, or COSF.

From the theory of wavelet bases, the scaling space V; (¢) as-
sociated with ascaling function ¢(¢) is

V;(6) = Span{6(2't - n)}.

The Shannon sampling theorem can then be stated in the wavelet
context. Let ¢(¢) bethe sinc function. If f(¢) € Vo(¢), then

Fy=>" fn)é(t—n)

Doesthe sampling theorem hold for other ¢(¢)? It isshownin[15],
that the sampling property holdsfor an orthogonal scaling function
¢(¢),if andonly if ¢(¢) isalso cardinal. Therefore, every cardinal
orthogonal scaling function yields a sampling theorem. The Shan-
non sampling theorem for band-limited signalsis the special case
obtained using the sinc function.

An important question arises— do there exist cardinal orthog-
onal scaling functions of compact support? The answer isyes: the
Haar function is one example. However, asmentioned in the Intro-
duction, there are no others[15]. The orthogonal scaling functions
of Daubechiesare not cardinal. The Haar function is the only car-
dinal orthogonal scaling function of compact support.

2.1. Halfband Filters

Itisconvenientto characterizeacompactly supported COSFin terms
of the scaling filter h. Recall first the definition of ahalfband filter.
h(n) ishalfbandif ~(2n) = c-é(n) for somenonzeroc. Halfband
filters take the value O on the even integers, except at n = 0.

Let r(n) denotethe autocorrelation sequenceof h(n). r(n) =
> h(k)h(k + n). For h(n) to generate an orthogonal scaling
function ¢(t), it isnecessary that r(n) be halfband, »(2n) = §(n)
[3]. On the other hand, for ascaling filter k(n) to generate a car-
dinal scaling function ¢(¢), it is necessary that A (=) be halfband,
h(2n) = —=6(n) [15]. Hence, for h(n) to generateascaling func-
tion that is both cardinal and orthogonal, it is necessary that both
h(n) and r(n) behalfband.

The Haar function is the only COSF of compact support be-
cause the only appropriate FIR halfband filters 2 () whose auto-
correlation function are also halfband, are filters having 2 nonzero
coefficients. Other examplesof COSFs are givenin [10, 15]. The
paper [15] describes COSFs based on IR scaling filters 2 (n); al-
though they are not of compact support, their decay is exponential.
Notein addition that scaling functions based on scalingfilters of the
form H(z) = A(z%) + 2~ where A(z) is dlpass, are car-
dinal because such scaling filters are halfband (up to a shift). The
scaling function in Figure 2 of [10] is therefore a COSF. Although
not of compact support, it's decay is exponential.

3. MULTIWAVELET BASESAND THE SAMPLING
THEOREM

Multiwavelet bases havereceived much attention since 1994 when
it was shown by example in [4, 5] that symmetry, orthogonality,

compact support and approximation order X > 1 can be simul-
taneously achieved, which is not possible in the traditional scalar
wavelet case.

In this paper, we show that using multiwavelet basesit is pos-
sibleto achievesimultaneously cardinality, orthogonality, compact
support, and approximation order K > 1. That is, there exist mul-
tiwavelet orthogonal scaling functions of compact support and ap-
proximationorder K > 1 for whichaShannon-like sampling prop-
erty holds, which is not possible in the scalar wavelet case.

Multiwavelet basesare wavel et bases based on several scaling
and wavelet functions. This paper considers multiwavelet bases
based on 2 scaling functions ¢ (t), ¢1(¢) and 2 wavelet functions
¥o(t), 11(t). Accordingly, there are 2 scaling filters 2o (n), h1(n)
and 2 wavelet filters hz(n), ha(n).

The functions ¢¢(t), ¢1(t) are orthogonal multiscaling func-
tionsif

1. ¢o(t), 91 (1) satisfy amatrix dilation equation

6(t) =v2>_ C(n)§(2t —n)

where ¢(t) = (¢o(t), ¢1(t))", and C(n) are 2 by 2 matri-
ces.

2. ¢o(t), ¢1(t) are orthogonal to their integer shifts.
Joitt,a =yt =i~ 5) o)

Thenotationfor C(n) usedinthispaperis[C(n)]:,; = h:(2n+7).
For example

o (0 ho(1 ho(2 ho(3
o) = < hlgog hlglg > o= < hlgzg hlgi‘g >

etc, where ho(n) and k1 (n) are the two scaling filters.
The scaling space V; (¢o, ¢1) isgiven by

Vi(¢o, ¢1) = Span{¢o(2’t — n), $1(27t — n)}.
Thefunctions ¢o(t), ¢1(¢) will becalled cardinal if

bo(n/2) = 8(n)
$1(n/2) =6(n —1).

Except for ¢t = 0, ¢o(¢) takesthe value 0 on the half integers, and
except for t = 1 so does ¢1 (t).

A version of the sampling theorem, for the multiwavelet case,
is straightforward.

Let¢o (), ¢1(¢) becardinal orthogonal multiscaling functions.
If f(t) € Vo(do, ¢1), then

FO) =" f(n)do(t—n)+ f(n+1/2) ¢1(t —n)

Shannon sampling using the sinc function can be expressedin this
form using ¢o () = sinc(2t), ¢1(t) = sinc(2¢t — 1).

Thequestion becomes: do thereexist cardinal orthogonal multi-
scaling functions ¢ (), ¢1(¢) of compact support and approxima-
tion order K > 1? Yes. In Section 5, examples of such functions
will be given.



4. BALANCE ORDER

For traditional wavelet bases, the approximation order K isanim-
portant measure of how well the discrete-time wavelet transform
(DWT) compressessmoothsignals®. Indeed, for wavelet basesbased
on asingle scaling function, the filter bank associated with the ba-
sisinherits the approximation properties of the basis. However, in
the multiwavelet case, the situation is different. For multiwavelet
bases, the filter bank does not inherit the approximation properties
of the basis [11].

To bespecific, thelowpass/highpasschannels, of the filter bank
associated with a traditional wavelet basis of approximation order
K, preserve/annihilatethe set P of polynomialsof degreek <
K. However, inthemultiwavel et case, for the preservation/ annihi-
lation properties, itin not sufficient that the multiwavel et basishave
approximation order? K. A stronger condition is required. Multi-
wavelet basesfor which the zero moment properties do carry over
to the discrete-timefilter bank are called balanced after Lebrunand
Vetterli [8, 9].

Specifically, multiwavelet basesfor which the associated filter
bank preserves/annihilatesthe set P, of polynomials of degree
k < K aresaidto beorder-K balanced. See[8, 9, 11, 12] for fur-
ther details. For discrete-time signal processing, the order of bal-
ancing is more useful than the weaker order of approximation.

From[11], thecondition for order-1 balancing for multiwavel et
basesis

(z7° 42774 27" +1) divides Ho(z)+ Hi(2). (D)

Order-1 balanced multiwavel et filter bankspreserve/annihilatecon-
stant signals. From [11], the condition for order-2 balancing is

3—z7¢

(z_3+z_2—|—z_1—|—1)2 divides Ho(z)+ < > H(2).
2

Order-2 balanced multiwavel etsfilter bankspreserve/annihilateramp
and constant signals. Theexamplesto begivenin Section 5 will be
balanced up to their approximation order.

5. CARDINAL MULTIWAVELET BASES

To obtain cardinal orthogonal multiscaling functions, it is useful to
characterize them in terms of the scaling filters ko and k1. For kg,
hy to generate orthogonal scaling functions ¢, ¢1, it is necessary
that ko and k1 be orthogonal to their shifts by 4:

S hilm) hy(n + 4k) = (i — ) - 5(k) ®

Thescalingfunctions ¢, and ¢, presented below arebased onscal-
ing filters ko and k1 possessing a particular structure.
5.1. Order-2Balanced Example

An order-2 balanced cardinal orthogonal system was obtained with
scalingfunctionssupportedon [0, 5] and scaling filtersof length 11.

Hf fFp(t)dt = Ofork = 0,..., K — 1 (and not for k = K) then
thewavelet basisis said to have approximation order K.

21f ftkep;(t)dt = 0fori = 0,1andk = 0,..., K — 1 (and not for
k = K) then the multiwavelet basis is said to have approximation order
K.

The scaling filters have the form

ho(n):%( a, 0, b, 1, ¢, 0, d, 0, e, 0, f)
4
hl(n):%(—f, 0, e, 0,—d, 1, ¢, 0,—=b, 0, a)
©)

With this form, orthogonality between ko and £, isstructurally in-
corporated. It isnecessary only to choosethe parametersso that Ao
isorthogonal to its own shifts by 4. Theremaining free parameters
will be used to attain balance order K > 1.

Our problemisto find a, ..., f suchthat ko and k1 in (4,5)
satisfy the orthogonality conditions (3) and the second order bal-
ancing conditions (2). Thisis a system of nonlinear equations —
the balancing conditions (2) are linear, but the orthogonality con-
ditions (3) are quadratic. The following solutionsto this system of
nonlinear equationswere obtained using alexical Grobner basis[2]
(for the computation of which, the software Singular was employed

(7).
A=—1/8++15/32

a=1/32
b=A+1/4
c=15/16
d=—-2A—-1/4
e=1/32
f=A

As indicated, 2 solutions exist, however only one of them yields
acceptablescaling functions, namely A = —1/8 +/15/32. That
solution is shown in Figure 1. Notethat ¢o, ¢1 shownin the fig-
ure are actually shifted cardinal functions, ¢o(3/2) = 1 instead of
$0(0) = 1, etc.
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Figure 1: Order-2 balanced cardinal orthogonal scaling functions
do(t) and ¢1(t), with A = —1/8 ++/15/32. Thesupport of each
is[o, 5].



The wavelet filters k2, hs aregiven by

h2(n):%(—a, 0,—b, 1,—¢, 0,—d, 0,—e, 0,—f)
(6)
hg(n):%( f, 0,—e, 0, d, 1,—¢, 0, b, 0,—a),
)
forn = 0,...,10. All four analysisfilters are obtained from the

single prototype filter ko. The specia structure for hq, k1, k2, ks
guarantees orthogonality (3) provided that &, is orthogonal to its
shifts by 4.

The wavelets ¢ (t) and 1 (¢) are shownin Figure 2
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Figure 2: Order-2 balanced wavelet functions ¢o(t) and %1 (t),
corresponding to the scaling functions shown in Figure 1. Like
9o, 01, the wavelets o, 11 are cardinal.

6. DISCUSSION

The use of cardinal wavelet bases also simplifies the initialization
step of the discrete wavelet transform. That isthe estimation of the
the fine scale wavelet coefficients from the samples of a function
— the estimation of [ f(¢)¢(¢t — n)d¢ from f(n). (See[13] for an
overview of initialization methods.) However, with cardinal (or in-
terpolating) scaling functions no such initialization step is needed.
The samples f(n) are themselves the values sought.

It must benotedthat if asignal f(t) liesinascalingspaceV (¢)
or V(¢o, ¢1), then generally there aretranslations f (¢ — T') of the
function that do not lie in the scaling space. Hence, in the multires-
olution context there is aloss of shift-invariance, which occursin
both the wavelet and the multiwavel et cases. The requirement that
afunction and all its shiftslie in the same scaling spaceis very re-
strictive for sampling theorems, as discussed in [6].

7. CONCLUSION

The sampling issue has long been a concern in wavelets, both in
theory and in practice. Obtaining wavelet coefficientsfrom a sam-
pled signal has previously required approximation or prefiltering.

However, with the new cardinal multiwavelet basis, interpolation
and sampling issues are addresswithout departing from orthogonal
FIR multirate systems.
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