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Abstract

We aimed at training a neural network to classify stress test exercise data into one of three classes. normal, heart failure, or
lung failure. Good classification accuracy was obtained using a backpropagation neural network architecture with one
hidden layer during cross validation on data set of 110 vectors, when all 17 channels were used. We further aimed at
determining which of these channels were critical to the decision making process. This was done through an input
sensitivity analysis. Results showed that nine channels formed a critical superset of which possibly any eight could achieve
almost perfect classification. We thus show that faster and more accurate classification may be obtained by input channel
elimination due to dimension reduction of input space, which makes better generalization.

1. INTRODUCTION TO EXERCISE DATA

Neural Networks (NNs) have been successfully
used to classify and recognize patterns of
response in medical diagnoses, such as the
Progressive Work Exercise Test (PWET) [1,2]
where a patient is asked to exercise on a
stationary bicycle while an array of electrodes
and sensors recording vital health information.
The exercise data were obtained from three
different subject classes: normal subjects,
subjects with cardiac failure, and subjects with
Interstitial Lung Disease. The pattern of each
subject’s response to exercise was characterized
by a third degree polynomia to each of 17
different data channels as a function of wattage.
The 68 coefficients from each subject were
used as inputs to a multilayer perception NN
classifier.

The 17 input data channels are referenced by
their respective numbers throughout this paper

[1].

1. Watts. Power generated by the subject on
the bike. All other channels are interpreted

(regressed) based on the watts being spent
by the patient.

2. Oxygen Consumption per minute (VOy):
This is used to quantify the degree of
impairment of the subject. VO, bears a
linear relationship to watts, hence the two
may be considered surrogates of each other.

3. VO,/kg: Channel 2 scaled by body weight.

4. Respiratory Quotient (R): Ratio of CO;
production to O, consumption. At rest, it is
about 0.8 and rises with exercise. The point
whereit crosses 1 iscritical.

5. Ventilatory Equivalent for Oxygen
consumption (VEO2): Computed as
VO2/VE.

6. Ventilatory Equivalent for Carbon
Dioxide consumption (VECO2):
Computed as VCO2/VE.

7. Minute Ventilation (VE): The amount of
air breathed per minute.

8. VCO,: the amount of carbon dioxide
produced per minute.

9. Vd/Vt: Vd denotes dead space. Vt denotes
tidal volume.

10. The tidal volume (Vt): The volume of
each breath.



11. Ti/Ttot: This is the ratio of time taken to
breathe in to the total breath cycle time.
12. Respiratory Rate (RR): This shows
the same behaviour as channel 10.
13.End tidal CO2 (EtCOy): This is the
concentration of CO, exhaled in each
breath.
14. Oxygen Saturation (SOg): This is the
percent of hemoglobin that carries oxygen.
15. (VO2/HR): This is the amount of oxygen
consumed per heartbeat and is calculated as
its name suggests.
16. Blood Pressure. This is sensitive to heart
disease.
17.Heart Rate (HR): Diseased hearts,
depending on type of disease, may show
one of two abnormalities:
* HR starts high and then gets closer to
the theoretical maximum over time.
»  Chronotropic incompetence is shown,
meaning that the heart rate cannot rise
high enough.

2. DATA CHANNEL ELIMINATION

Having trained a reasonably good neural
network classifier [3] using the 17 data
channels data as the inputs, an input sensitivity
analysis [4] is conducted on the trained
network, using the training data. Sensitivity of
each of the three outputs to each of the 68
inputs (17 channels with 4 coefficients of the
3 order polynomial fit to each) is calculated as
apartia derivative of the output with respect to
the input [4] (assuming a 2-layer, one hidden
layer network).
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where
Xi denotes the i-th input to the network.

& (1) denotesthe i-th element of the hidden
layer of the network. Sinceit isatwo-layer
network, vyi-a (2).

N = number of neuronsin the hidden layer.
N; = number of neurons in the input (first)
layer.

wim(l) denotes the weight of the connection
from the i™ node of the (I-1) layer to the j™
node of the I layer.

Once the average sensitivities (over all data in
the same class) are known, channels with alow
average senditivity across all classes can be
eliminated as unimportant to the decision
making process. The step-by-step process is
given below.

1. Train aneura network on all available data.

2. Using these weights, compute the
sensitivity for each vector.

3. Group vectors according to their classes.

4. Compute the mean and absolute
sensitivities for each class.

5. Determine the channel that has least

sensitivity across classes.

Eliminate this channel and cross-validate.

If there is no degradation of response, the

channel isindeed superfluous.

8. Steps 1-7 are repeated successively for
smaller size of data channels, till a point of
classification degradation is reached. Now,
no more channels can be removed..

No

3. SIMULATION RESULTS

There are 111 data vectors available, which
were broken up into 11 files of 10 vectors each.
Thus, we have €eleven tests during cross
validation, each testing with 100 training
vectors and 10 testing vectors. All the results
were obtained based on an one-hidden-layer
network with 20 hidden neurons. Reported
below arethe classification accuracy (in terms
of %) for each disease class (N,C,P), taking
into account al 11 cross-validation sets.



Starting with al 17 data channels (68 inputs),
we gradually eliminate one input data channel
(4 inputs) at each trial with least sensitivity as
shown in Table 1. A breakdown of the

Table 1: The sequence of data channel
Elimination (one at atime).

classification accuracy can be clearly observed Trid Additional channel deleted

when two channels were eliminated after Trial 1 Base case

9. More specifically, out of 17 data channels, 9 2 1

of them (channels 4,7,8,9,10,11,12,14,15) were 3 6

involved in the decision making process, while 4 5

a least 8 of them are critically required for 5 16

better performance (from 95.4% using al 17 6 13

channels to 98.2% using 9 channels). This 7 17

better performance was achieved due to the 8 2

lower dimensional input space ensuring a better 9 3

generalization capability in the classification. 10 4

11 I

Trial 1 (all 17 channels):

class| 1 2 3 4 5 6 7 8 9 10 11
N 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
C 75 | 100 | 100 | 100 | 100 | 100 | 75 | 100 | 100 | 100 | 100
P 100 | 66.7 | 100 | 100 | 80 | 100 | 75 | 100 | 100 | 50 | 100

Trial 2 & 3 (after 1% and 6™ channels are removed):

class| 1 2 3 4 5 6 7 8 9 10 11
N 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
C 75 | 100 | 100 | 100 | 100 | 100 | 75 | 100 | 100 | 100 | 100
P 100 | 66.7 | 100 | 833 | 80 | 100 | 75 | 100 | 100 | 50 | 100

Trial 4 & 5 (after 5" and 16™ channelsare further removed):

class| 1 2 3 4 5 6 7 8 9 10 11
N 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
C 100 | 100 | 100 | 100 | 100 | 100 | 75 75 | 100 | 100 | 100
P 100 | 66.7 | 100 | 100 | 80 | 100 | 75 | 100 | 100 | 50 | 100

Trial 6 & 7 (after 13" and 17" channels are further removed):

class| 1 2 3 4 5 6 7 8 9 10 11
N 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
C 100 | 100 | 100 | 100 | 100 | 100 | 75 75 | 100 | 100 | 100
P 100 | 100 | 100 | 100 | 80 50 75 | 100 | 100 | 100 | 100




Trial 8 (after 2" channel isremoved):

class 1 2 3 4 5 6 7 8 9 10 11
N 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
C 100 | 100 | 100 | 100 | 100 | 100 75 100 | 100 | 100 | 100
P 100 | 100 | 100 | 100 80 50 75 100 | 100 | 100 | 100

Trial 9 & 10 (after 3@ and 4™ channels are removed):

class 1 2 3 4 5 6 7 8 9 10 11
N 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
C 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
P 100 | 100 | 100 | 100 | 100 | 100 50 100 | 100 | 100 | 100

Trial 11 (after 7" channel isremoved):

class 1 2 3 4 5 6 7 8 9 10 11
N 100 | 100 | 100 | 100 33 100 | 100 | 100 | 100 | 100 | 100
C 100 | 100 | 100 | 100 | 100 | 100 75 100 | 100 | 100 | 83.3
P 100 | 100 | 100 | 100 | 100 50 50 100 | 100 | 100 | 100

Note also that of the channels that were deemed
redundant to the decision process, most
contained values that were deducible from
retained channels (VECO?2, VEO2,
VCO2/VO2, etc.). Some channels contained
values that differed within a given class (HR),
and some were obtaned by manua
measurement at  predetermined intervals,
followed by linear interpolation (HR, BP). In
both the latter cases, it is possible that
inconsistencies within a  class caused a
reduction in sensitivity.

4. CONCLUSION

Neural networks were useful to automatically
diagnose conditions of normal, heart failure and
lung failure from exercise data. Sensitivity
analysis was found useful to isolate critical
channels, thereby reducing the dimension of the
decision space and increasing speed and
accuracy of the classification system.
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