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ABSTRACT row x, of this matrix to represent the variation in time of the

In this paper we extend thisfomaxtechnique [1] for blind signal nth signal over all availablé/ samples; likewise, we denote the

separation from the instantaneous mixing case to the convolutivemth’m =1, '."M (_:ol_umn_ (snapshot) as(m), which repre-
mixing case. Separation in the convolutive case requires an unmix-SENtS the spatial variation (|.e.,_acr_oss sensors) atr_mesam-

ing system which uses present and past values of the observatio#?Ie instant. An equwalent nota_tlon' IS l.JSEd for the sigeals u
vector, when the mixing system is causal. Thus, in developing an an(_:iy shown in Fig. 1. Our objgctlve Is to produge outpsits,
infomax process, both temporal and spatial dependence of the obWh'Ch are the deS|_red o_utp_ut s_lgnals_correspondlng_tc_) the sepa-
servations must be considered. We propose a stochastic gradienrta.te.d sources. This OBlfﬁtlve Is realized by determ_mmg an un-
based structure which accomplishes this task. Performance of the"™*In9 systemW € R  and a temporal processing system

NxN 0 iAi
proposed method is verified by subjective listening tests and quan-A € R (both Whos_,e e'e”_‘ef.“s are FIR filters) so that the joint
titative measurements. entropy (_)f the outputg is maximized. .

In this paper we assume the elements of Miex N mixing

systemF are FIR filters of known lengttk + 1. It is straightfor-
1. INTRODUCTION ward to show [11] that separation of the sources can be achieved
using anN x N unmixing systemW whose elements consist

Blind signal separation (BSS) is now becoming a mature topic. 4f FIR filters of lengthLw + 1 = (N — 1)K. We can define
Much work [1][3][4][5][6] has been done on BSS for the case w, ¢ RV*N ¢y =0, ..., Ly as the matrix of FIR filter weights

of instantaneousnixing; i.e., when the transfer functions from 5 delay?. The quantityA,,? = 0, ..., L4 is defined in a corre-
the sources to the sensors involve only scaling operations on th%ponding way fromA.. In this case however, because there is no
inputs. However, less effort has been directed towards the morecoss_coupling between the channels, Aheare diagonal.

difficult convolutivemixing case, where a much broader class of
transfer functions can exist. The convolutive case occurs more
often in practice; e.g., acoustic mixing in live reverberative envi-
ronments. The ability of BSS algorithms to handle the convolutive
mixing case greatly expands the potential range of applications
where these algorithms can be put to use.

Previous work in BSS for the convolutive mixing case includes
[2][71[8][9][10]. However, these methods all suffer from limita- v = Wx 1)
tions, such as the ability to deal with only two input sources, re- B
strictions on the mixing system, or excessive computational com- whereW is given as
plexity. In this paper, we present a relatively simjpitomaxtech-

2. INFOMAX CRITERION FOR BSS

Let us define the vectar € RMY as ve¢X)*. A similar defini-
tion holds for the quantities, v, u andy. Then the outpu¥ can
be expressed in terms of the observations as

nigue for blind signal separation in the convolutive mixing case Wo

that exploits the temporal and spatial properties of the output sig- W Wo

nals in a straightforward manner. w=|: . 2
Our system model is depicted in Fig. M samples fromV WL Wo

statistically independent, zero-mean sources are mixed through an w Wi o Wo

N x N multidimensional dynamic channel to produceMnx M w

matrix X of observations. We denote thgh,n = 1,...,N In a similar way, we can define the variakleas
This work was supported by grants from Consejo Nacional de Ciencia u=Av 3)

y Tecnologa (CONACYT, Mexico), the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), and the Telecommunications  The ve¢-) operator concatenates the columns of its matrix argument
Research Institute of Ontario (TRIO). into one long vector.
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Figure 1: A blind signal separation structure for the convolutive
mixing case.

whereA is defined using the\ , in a corresponding way t& in
.
The auxiliary output vectoy is defined as
yi =9(uj), j=1,...,MN, 4
whereg(-) is a suitable nonlinearity [6][5].

We intend to achieve spatial separation of the outputsy
maximizing the mutual information between the sourcasd the
outputsy with respect tcA andW, in a manner analogous to the
method proposed by [1]. This is equivalent to maximizing the joint
entropyH (y) of the outputy. Maximizing H (y) (under suitable
constraints) has the effect of driving the elementgydbwards

-det

MN

(det W)(det A) H yi.

j=1

®)

In this paper we usg(u) = tanh(u). Then,y; is given as

y; =1—yj. 9)

Using (8) and (5) we have

H(y) Elln £, (y)]

Eln |J]] - Eln fa (x)]
MN

E |In|det W|+In|det A| +lnH ly;]
j=1

+H(x). (10)

We now have an expression féf(y) in terms of the parameters

of interest. An off— line algorithm for separation given a block
of M samples could be achieved by directly minimizing (10) with
respect tdW andA.. However, an on—line algorithm is more desir-
able. In this respect, we now propose a stochastic gradient ascent
algorithm for blind signal separation, which takes into account the
previousM samples of data, by maximizing (y) with respect to

statistical independence. When the input sources are independentW andA..

this criterion is sufficient for blind signal separation. In the convo-
lutive case however, the observationare generally dependent in
both space and time; thuE,(y) is maximized by forcing both the
temporal and spatial dimensions ®ftowards independence. In
this proposed configuration, the function' ¥ is to provide spa-
tial independence of the outputs, whereas the functioA @ to
provide temporal independence.

To achieve separation, an expressionflty) in terms of W
andA is required. In this vein, we can express the joint fdfy)
of y as

fz(x)
fuly) = ®)
||
whereJ is the Jacobian of the transformatiorsofnto y, or
Oy1 Oy1
Ox1 Oxpr
J = det (6)
Oym Oym
Ox1 Oxpr
where each element of the above is given by
Oyp1 Byp1
5 Oz 41 dzgn
Y
8—}:’: : : ) paqzla"'aM' (7)
7 OypN OypN
Oz 41 dzgn
From (6) we have
vy vy Ouq Ouy
Bx1 Oxpr vy ovr
J = det det :
ovar ovar dups Sups
8x1 dxnr vy v

3. TRAINING RULES FORW AND A

We now consider the case f®&. The stochastic gradient update
for the £th weight matrixW, is given from (10) by

OH(y)

AW, W,

[0

MN
P -9 ,
In| det W| + —2— 1 a1
aw, nlde |+6Wzn,l_[1|yJ| (1)
e

The first term evaluates as

0 ~ 0
8—len|detW| = Ma—WllIl|detW0|
_ [ m[wE ite=0
0 otherwise.

We now consider the differentiation of the second term in (11)
with respect to a particular elemenpq, p,¢ =1, ..., N of Wy,.

This term separates into a sum of log—terms, where only one term
depends Omupqe:

d d d dym
Yj Ymn

In | =2~ 1
dwpqe ; " du; dwpqe 2; " dUmn

d M N
T O O 10l = yin)

m=1n=1

M N
d 2 dumn
In(1 —
D2 g -y T

m=1n=1




dumn

(13)

M N
PP
m=1n=1

Now, we must concentrate on the tefi,, /dwpq¢. Considering
only W, themth blocku(m) € R of u is a convolution:

dwpqg

La

= ZALA_k [Wex(k £+ m)],
k=0

m>La. (14)

The differentiation of the above with respect to glagh element of
‘W, involves only thepth column ofA . , _ and thegth element
of x(k—£+m). Further, becausA, is diagonal, the only non-zero
element in theth column ofA ., _, is the scalan,(L4 — k). So
we get

dumn _ PA ap(La —k)zg(k —L+m) ifp=n
dwpqe 0 otherwise
(15)
Substituing Eg. (15) into Eg. (13) we have:
dwpql %m 1 Zn 1 y72nn) =
Zmzl(_Qymp Zk:o ap(La —k)xg(k — £+ m)
(16)
Let
Ly
Zpa(m =) = ap(La —k)zg(k—L+m)  (17)
k=0

Then Eq. (16) becomes

ZZln

m=1n=1

-3

m=1

—2Ymp)2pg(m —£). (18)

ymn
dwpqg

Expressing the above in matrix form, we have the on-line learning
rule for Wy,

[Wg’]fl—Zym(Dzm if¢=0
AW“"{ —2Ym @ Zm_¢ 0=1,... Ly. 19
where
le(m) le(m)
z21(m) zan (M)
Zm = (20)
zn1(m) znn (m)

and the® operator, which maps aN x 1 vectory,, and anN x
N matrix z, into anN x N matrix, is defined according to the
following rule:

Ym1211(m) Ym1z1n (M)
Yma221(m) Ym222n (M)
Ymn2zn1(m) YmnzZNN (M)

We can now turn our attention to trainio. In this case, we re-
alize that ideally A must produce outputs which aretemporally
independent This may not be possible using only the FIR filter
structure proposed in Fig. 1. However, the structure can produce

uncorrelated outputs, which in many cases closely approximates

independence. The training rules we develop generatA &or
which the resulting temporal dependence is minimized.

The development of the training rule faé is similar to that
for W. Using (10) the adjustment for a stochastic gradient ascent
rule for a particularA , satisfies

OH(y)
AA;, BAL
MN
_ 0 - 0 '
= 8Tln|detA|+a—Mln1—[1|yj|. (22)
j=
As before, the first term evaluates as
o i M[AT]™" ife=0
—— In|det A| = 0 23
0A, n|det Al {0 otherwise. (23)

By analogy to (13), we differentiate the second term of (22) with
respect to a particular elemesy,, to get

MN
d dy] dumn
—2Ymn) . 24
dapqt 4 Z du; mz:l ; y dapq (24)
The derivative‘(jz—’"'; evaluates to
P
dumn _ | vp(m—=1) ifp=g=n
dapge { 0 otherwise (25)

Substituting (23) (24) and (25) into (22) and combining into matrix
form, we have

if£=0
£=1,...

[Ao]™! — diag2y.m ® Vin]

AALx { —diag2ym ® Vm|

,La.
(26)
where® means element—by—element multiplication.

4. RESULTS

We demonstrate the performance of the algorithm forNan=
2, K = 6 mixing system. The sources are two segments of speech,
4.1 seconds in duration, sampled at 8kHz, normalized so that their
maximum amplitude is unity. The speech segments a male
speaking the phraseMarge, it takes two to lie— one to lie, and
one to listet), while s, is a female utterance oHow could you
Krusty? I'd never lend my name to an inferior produict!

The matricedW, and A, are all initialized to the identity ma-
trix. The updates at iteratiohare made in accordance with (19)
and (26) as

Wi+ 1] =
{( il (W) * - aviostl) 110
W,[i] — nw (2y[i] © z[i — £]) (=1,.. .(, L;V
27

A corresponding rule is applied for th&, from (26) , but using
the quantityn4 instead. The mixing syste is specified as

Fii(z) = 14082 ' +0.72 % +0.42 > +032 * +
0.2z ° +0.1z°°

Fiz(z) = 0.6405z""+052"%+042"%+032""+
0.2z7% +0.127°

Foi(z) = 0540527 " +0.4272 4035272 +0.327* +
0.2z ° +0.1z°°

(z) = 14092 ' +082 2 +0.62 >+04z *+

0.3z % +0.12°°



A signal to interference ratioSIR,, defined as the desired
signal energy to interfering signal energy on tite channel after
convergence is obtained, was calculated. The results fof 8R
nw are shown in Table 1, for valuds, = 20 andna = 5x 1078,

‘W andA, which are responsible for minimizing statistical depen-
dence amongst the elementsyofn space and time, respectively.
Stochastic gradient ascent rules have been derived. The perfor-
mance of the method has been verified by subjective listening tests

The converged speech waveforms corresponding to the bold entryand by quantitative measurements.

of Table 1 are shown in Fig. 2. The SIR’s of the observatigns
themselvebeforeW are 3.21 dB and 5.22dB respectively. These
quantitative results, in conjunction with subjective listening results
which were performed, confirm that a significant level of separa-
tion is indeed achieved. Note that it is difficult to assess the level
of separation by direct visual comparisonsoindv in Fig. 2,
because the output signatshave been subjected to a significant
filtering operation imposed by the mixing and unmixing networks.
Experimental results have verified that the Frobenius norms
|[|[AW]||r and||AA||r approach zero after about 3 seconds of
speech, indicating that converged values Wirand A exist, at

least for the case discussed. Qualitative experiments have also in- 2]

dicated the proposed technique is insensitive to initial conditions
of W andA..

[ nw | SIRi(dB) | SIR(dB) |
0.005] 30.15 16.54
0.05 | 19.45 16.77
05 | 1583 6.06

Table 1: SIR’s for different learning rates whé&h= 6.
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Figure 2: Performance of the algorithm for tiie = 6 case:
sources (ag1 and (b)s2 get mixed through matri¥ to create sig-
nals (c)x; and (d)x». Separation is achieved after convergence,
as seenin (ey; and (f)va.

5. DISCUSSION AND CONCLUSIONS

We have presented an extension of the infomax technique for blind
signal separation to the convolutive mixing case. The extension
involves maximization of the joint entropy gf with respect to

The natural gradient [4][5], which is well recognized to yield
better performance for the instantaneous mixing case, has not yet
been derived for this proposed technique. That is a topic for further
work.
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