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ABSTRACT

In this paper we extend theinfomaxtechnique [1] for blind signal
separation from the instantaneous mixing case to the convolutive
mixing case. Separation in the convolutive case requires an unmix-
ing system which uses present and past values of the observation
vector, when the mixing system is causal. Thus, in developing an
infomax process, both temporal and spatial dependence of the ob-
servations must be considered. We propose a stochastic gradient
based structure which accomplishes this task. Performance of the
proposed method is verified by subjective listening tests and quan-
titative measurements.

1. INTRODUCTION

Blind signal separation (BSS) is now becoming a mature topic.
Much work [1][3][4][5][6] has been done on BSS for the case
of instantaneousmixing; i.e., when the transfer functions from
the sources to the sensors involve only scaling operations on the
inputs. However, less effort has been directed towards the more
difficult convolutivemixing case, where a much broader class of
transfer functions can exist. The convolutive case occurs more
often in practice; e.g., acoustic mixing in live reverberative envi-
ronments. The ability of BSS algorithms to handle the convolutive
mixing case greatly expands the potential range of applications
where these algorithms can be put to use.

Previous work in BSS for the convolutive mixing case includes
[2][7][8][9][10]. However, these methods all suffer from limita-
tions, such as the ability to deal with only two input sources, re-
strictions on the mixing system, or excessive computational com-
plexity. In this paper, we present a relatively simpleinfomaxtech-
nique for blind signal separation in the convolutive mixing case
that exploits the temporal and spatial properties of the output sig-
nals in a straightforward manner.

Our system model is depicted in Fig. 1.M samples fromN
statistically independent, zero-mean sources are mixed through an
N �N multidimensional dynamic channel to produce anN �M
matrix X of observations. We denote thenth; n = 1; : : : ; N
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row xn of this matrix to represent the variation in time of the
nth signal over all availableM samples; likewise, we denote the
mth;m = 1; : : : ;M column (snapshot) asx(m), which repre-
sents the spatial variation (i.e., across sensors) at themth sam-
ple instant. An equivalent notation is used for the signalss; v; u
andy shown in Fig. 1. Our objective is to produce outputsvn,
which are the desired output signals corresponding to the sepa-
rated sources. This objective is realized by determining an un-
mixing systemW 2 <N�N , and a temporal processing system
A 2 <N�N (both whose elements are FIR filters) so that the joint
entropy of the outputsy is maximized.

In this paper we assume the elements of theN � N mixing
systemF are FIR filters of known lengthK + 1. It is straightfor-
ward to show [11] that separation of the sources can be achieved
using anN � N unmixing systemW whose elements consist
of FIR filters of lengthLW + 1 = (N � 1)K. We can define
W` 2 <N�N ; ` = 0; : : : ; LW as the matrix of FIR filter weights
at delay`. The quantityA`; ` = 0; : : : ; LA is defined in a corre-
sponding way fromA. In this case however, because there is no
cross–coupling between the channels, theA` are diagonal.

2. INFOMAX CRITERION FOR BSS

Let us define the vectorx 2 <MN as vec(X)1. A similar defini-
tion holds for the quantitiess, v, u andy. Then the outputv can
be expressed in terms of the observations as

v = ~Wx (1)

where ~W is given as

~W =

2
66664
W0

W1 W0

...
...

WLW : : : W0

WLW : : : W0

3
77775 : (2)

In a similar way, we can define the variableu as

u = ~Av (3)

1The vec(�) operator concatenates the columns of its matrix argument
into one long vector.
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Figure 1: A blind signal separation structure for the convolutive
mixing case.

where~A is defined using theA` in a corresponding way to~W in
(2).

The auxiliary output vectory is defined as

yj = g(uj); j = 1; : : : ;MN; (4)

whereg(�) is a suitable nonlinearity [6][5].
We intend to achieve spatial separation of the outputsv by

maximizing the mutual information between the sourcess and the
outputsy with respect toA andW, in a manner analogous to the
method proposed by [1]. This is equivalent to maximizing the joint
entropyH(y) of the outputsy. MaximizingH(y) (under suitable
constraints) has the effect of driving the elements ofy towards
statistical independence. When the input sources are independent,
this criterion is sufficient for blind signal separation. In the convo-
lutive case however, the observationsx are generally dependent in
both space and time; thus,H(y) is maximized by forcing both the
temporal and spatial dimensions ofx towards independence. In
this proposed configuration, the function ofW is to provide spa-
tial independence of the outputs, whereas the function ofA is to
provide temporal independence.

To achieve separation, an expression forH(y) in terms ofW
andA is required. In this vein, we can express the joint pdffy(y)
of y as

fy(y) =
fx(x)

jJ j
(5)

whereJ is the Jacobian of the transformation ofx into y, or

J = det

2
64

@y1
@x1

: : : @y1
@xM

...
...

@yM
@x1

: : : @yM
@xM

3
75 (6)

where each element of the above is given by

@yp
@xq

=

2
664

@yp1
@xq1

: : :
@yp1
@xqN

...
...

@ypN
@xq1

: : :
@ypN
@xqN

3
775 ; p; q = 1; : : : ;M: (7)

From (6) we have

J = det

2
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@v1
@x1

: : : @v1
@xM

...
...

@vM
@x1

: : : @vM
@xM

3
75 det
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@v1
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@vM

...
...

@uM
@v1

: : : @uM
@vM

3
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� det
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@y1
@u1

: : : @y1
@uM
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@yM
@u1

: : : @yM
@uM

3
75

= (det ~W)(det ~A)

MNY
j=1

y0j : (8)

In this paper we useg(u) = tanh(u). Then,y0j is given as

y0j = 1� y2j : (9)

Using (8) and (5) we have

H(y) = E[ln fy(y)]

= E[ln jJ j]� E[ln fx(x)]

= E

"
ln j det ~Wj+ ln j det ~Aj+ ln

MNY
j=1

jy0j j

#

+H(x): (10)

We now have an expression forH(y) in terms of the parameters
of interest. An off– line algorithm for separation given a block
of M samples could be achieved by directly minimizing (10) with
respect toW andA. However, an on–line algorithm is more desir-
able. In this respect, we now propose a stochastic gradient ascent
algorithm for blind signal separation, which takes into account the
previousM samples of data, by maximizingH(y) with respect to
W andA.

3. TRAINING RULES FOR W AND A

We now consider the case forW. The stochastic gradient update
for the`th weight matrixW` is given from (10) by

�W` /
@H(y)

@W`

=
@

@W`

ln j det ~Wj+
@

@W`

ln

MNY
j=1

jy0j j: (11)

The first term evaluates as

@

@W`

ln j det ~Wj = M
@

@W`

ln j detW0j

=

�
M
�
WT

0

�
�1

if ` = 0
0 otherwise.

(12)

We now consider the differentiation of the second term in (11)
with respect to a particular elementwpq`; p; q = 1; : : : ; N ofW`.
This term separates into a sum of log–terms, where only one term
depends onwpq`:

d

dwpq`

MNX
j=1

ln

���� dyjduj

���� =
d

dwpq`

MX
m=1

NX
n=1

ln
��� dymn
dumn

���
=

d

dwpq`

MX
m=1

NX
n=1

ln(1� y2mn)

=

MX
m=1

NX
n=1

d

dumn
ln(1� y2mn)

dumn
dwpq`



=

MX
m=1

NX
n=1

(�2ymn)
dumn
dwpq`

(13)

Now, we must concentrate on the termdumn=dwpq`. Considering
onlyW`, themth blocku(m) 2 <N of u is a convolution:

u(m) =

LAX
k=0

ALA�k [W`x(k� `+m)] ; m � LA: (14)

The differentiation of the above with respect to thepqth element of
W` involves only thepth column ofALA�k and theqth element
of x(k�`+m). Further, becauseA` is diagonal, the only non-zero
element in thepth column ofALA�k is the scalarap(LA�k). So
we get

dumn
dwpq`

=

� PLA
k=0

ap(LA � k)xq(k � `+m) if p = n
0 otherwise

(15)
Substituing Eq. (15) into Eq. (13) we have:

d
dwpq`

PM

m=1

PN

n=1
ln(1� y2mn) =PM

m=1
(�2ymp)

PLA
k=0

ap(LA � k)xq(k � `+m)
(16)

Let

zpq(m� `) =

LAX
k=0

ap(LA � k)xq(k � `+m) (17)

Then Eq. (16) becomes

d

dwpq`

MX
m=1

NX
n=1

ln(1� y2mn) =

MX
m=1

(�2ymp)zpq(m� `): (18)

Expressing the above in matrix form, we have the on-line learning
rule forW`

�W` /

�
[WT

0 ]
�1 � 2ym � zm if ` = 0

�2ym � zm�` ` = 1; : : : ; LW :
(19)

where

zm =

2
664

z11(m) � � � z1N (m)
z21(m) � � � z2N (m)

...
...

zN1(m) � � � zNN (m)

3
775 (20)

and the� operator, which maps anN � 1 vectorym and anN �
N matrix zm into anN � N matrix, is defined according to the
following rule:

ym � zm =

2
664

ym1z11(m) � � � ym1z1N (m)
ym2z21(m) � � � ym2z2N (m)

...
...

ymNzN1(m) � � � ymNzNN (m)

3
775 (21)

We can now turn our attention to trainingA. In this case, we re-
alize that ideally,Amust produce outputsu which aretemporally
independent. This may not be possible using only the FIR filter
structure proposed in Fig. 1. However, the structure can produce
uncorrelated outputs, which in many cases closely approximates
independence. The training rules we develop generate anA for
which the resulting temporal dependence is minimized.

The development of the training rule forA is similar to that
for W. Using (10) the adjustment for a stochastic gradient ascent
rule for a particularA` satisfies

�A` /
@H(y)

@A`

=
@

@A`

ln j det ~Aj+
@

@A`

ln

MNY
j=1

jy0j j: (22)

As before, the first term evaluates as

@

@A`

ln j det ~Aj =

�
M
�
AT

0

�
�1

if ` = 0
0 otherwise.

(23)

By analogy to (13), we differentiate the second term of (22) with
respect to a particular elementapq` to get

d

dapq`

MNX
j=1

ln

���� dyjduj

���� =
MX
m=1

NX
n=1

(�2ymn)
dumn
dapq`

: (24)

The derivativedumn
dapq`

evaluates to

dumn
dapq`

=

�
vp(m� l) if p = q = n
0 otherwise

(25)

Substituting (23) (24) and (25) into (22) and combining into matrix
form, we have

�A` /

�
[A0]

�1 � diag[2ym 
 vm] if ` = 0
�diag[2ym 
 vm] ` = 1; : : : ; LA:

(26)
where
 means element–by–element multiplication.

4. RESULTS

We demonstrate the performance of the algorithm for anN =
2; K = 6 mixing system. The sources are two segments of speech,
4.1 seconds in duration, sampled at 8kHz, normalized so that their
maximum amplitude is unity. The speech segments1 is a male
speaking the phrase “Marge, it takes two to lie– one to lie, and
one to listen”, while s2 is a female utterance of “How could you
Krusty? I’d never lend my name to an inferior product!”.

The matricesW` andA` are all initialized to the identity ma-
trix. The updates at iterationi are made in accordance with (19)
and (26) as

W`[i+ 1] =�
W0[i] + �W

�
fW0[i]g

�T � 2y[i]� z[i]
�

if ` = 0
W`[i]� �W (2y[i]� z[i� `]) ` = 1; : : : ; LW

(27)
A corresponding rule is applied for theA` from (26) , but using
the quantity�A instead. The mixing systemF is specified as

F11(z) = 1 + 0:8z�1 + 0:7z�2 + 0:4z�3 + 0:3z�4 +

0:2z�5 + 0:1z�6

F12(z) = 0:6 + 0:5z�1 + 0:5z�2 + 0:4z�3 + 0:3z�4 +

0:2z�5 + 0:1z�6

F21(z) = 0:5 + 0:5z�1 + 0:4z�2 + 0:35z�3 + 0:3z�4 +

0:2z�5 + 0:1z�6

F22(z) = 1 + 0:9z�1 + 0:8z�2 + 0:6z�3 + 0:4z�4 +

0:3z�5 + 0:1z�6



A signal to interference ratio, SIRn, defined as the desired
signal energy to interfering signal energy on thenth channel after
convergence is obtained, was calculated. The results for SIRn vs.
�W are shown in Table 1, for valuesLA = 20 and�A = 5�10�8.
The converged speech waveforms corresponding to the bold entry
of Table 1 are shown in Fig. 2. The SIR’s of the observationsx

themselvesbeforeW are 3.21 dB and 5.22dB respectively. These
quantitative results, in conjunction with subjective listening results
which were performed, confirm that a significant level of separa-
tion is indeed achieved. Note that it is difficult to assess the level
of separation by direct visual comparison ofs andv in Fig. 2,
because the output signalsv have been subjected to a significant
filtering operation imposed by the mixing and unmixing networks.

Experimental results have verified that the Frobenius norms
jj�WjjF and jj�AjjF approach zero after about 3 seconds of
speech, indicating that converged values forW andA exist, at
least for the case discussed. Qualitative experiments have also in-
dicated the proposed technique is insensitive to initial conditions
ofW andA.

�W SIR1(dB) SIR2(dB)

0.005 30.15 16.54
0.05 19.45 16.77
0.5 15.83 6.06

Table 1: SIR’s for different learning rates whenK = 6.
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Figure 2: Performance of the algorithm for theL = 6 case:
sources (a)s1 and (b)s2 get mixed through matrixF to create sig-
nals (c)x1 and (d)x2. Separation is achieved after convergence,
as seen in (e)v1 and (f)v2.

5. DISCUSSION AND CONCLUSIONS

We have presented an extension of the infomax technique for blind
signal separation to the convolutive mixing case. The extension
involves maximization of the joint entropy ofy with respect to

W andA, which are responsible for minimizing statistical depen-
dence amongst the elements ofy in space and time, respectively.
Stochastic gradient ascent rules have been derived. The perfor-
mance of the method has been verified by subjective listening tests
and by quantitative measurements.

The natural gradient [4][5], which is well recognized to yield
better performance for the instantaneous mixing case, has not yet
been derived for this proposed technique. That is a topic for further
work.
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