
EXTENDED RETIMING: OPTIMAL SCHEDULING VIA A GRAPH-THEORETICAL
APPROACH

Timothy W. O’Neil Sissades Tongsima Edwin H.-M. Sha

Dept. of Computer Science & Engineering
University of Notre Dame

Notre Dame, IN 46556

ABSTRACT

Many iterative or recursive applications commonly found in DSP
and image processing applications can be represented bydata-flow
graphs(DFGs). This graph is then used to performDFG schedul-
ing, where the starting times for executing the application’s in-
dividual tasks are determined. The minimum length of time re-
quired to execute all tasks once is called theschedule lengthof the
DFG. A great deal of research has been done attempting to opti-
mize such applications by applying various graph transformation
techniques to the DFG in order to minimize this schedule length.
One of the most effective of these techniques isretiming. In this
paper, we demonstrate that the traditional retiming technique does
not always achieve optimal schedules and propose a new graph-
transformation technique,extended retiming, which will. We will
also present an algorithm for finding an extended retiming which
transforms a DFG into one with minimal schedule length. Finally,
we will demonstrate a constant-time algorithm which verifies the
existence of a retimed DFG with the minimum schedule length.

1. INTRODUCTION

Many iterative or recursive applications can be represented bydata-
flow graphs, or DFGs [3, 8]. The nodes of a DFG represent tasks,
while edges between nodes represent data dependencies among
the tasks. In order to improve the performance of the system
running these applications, one could apply graph-transformation
techniques to the DFG in an attempt to increase the degree of par-
allelism. However, for certain graphs, these techniques may not
be able to produce a transformed DFG with minimum schedule
length. We will demonstrate this in this paper, as well as propose a
new transformation technique which does deliver optimal results.
When compared with the traditional methods, our new technique
quickly and easily produces a transformed graph without increas-
ing the size of the DFG.

Static scheduling, the process of determining the starting time
for each node of a DFG, is one of the most important stages in
architectural synthesis. The execution of all tasks is referred to as
an iteration, with the minimum length of time it takes to complete
an iteration called theschedule lengthof the DFG. We seek to op-
timize our schedule by minimizing its length. If we assume that
we have an adequate number of processors available to obtain the
optimal schedule, there are two ways to accomplish this: we can
explicitly schedule the DFG as-is, or we can first apply graph trans-
formation techniques to the DFG and schedule the acyclic (DAG)
part of the resulting graph.

A great deal of research has been done attempting to opti-
mize the schedule of tasks for an application after applying various
graph transformation techniques to the application’s DFG [4, 7].
One of the more effective of these techniques isretiming [1, 5],
where delays are redistributed among the edges so that the appli-
cation’s function remains the same, but the length of the longest
zero-delay path, called theclock periodof the DFGG and denoted
cl(G), is decreased. After applying simple as-early-as-possible
scheduling (also referred to in this paper asDAG scheduling), the
length of the schedule for graph G is given bycl(G).

To illustrate, consider the example of a DFGG1 given in Fig-
ure 1. We can see that the DFG of Figure 1 hascl(G1) = 4. A
delay can be removed from edge (C,A) and placed on edge (A,B)
to create a retimed version ofG1, denotedG1r and pictured in
Figure 2, with the property thatcl(G1r) = 3. The correspond-
ing static schedule is found in Figure 3. We see that our repeating
schedule calls for nodes B and C to begin execution together, with
node A starting upon the conclusion of C. The first copy of A is
not actually part of the repeating schedule; it’s purpose is merely
to “prime the pump” so that the repeating part of the schedule may
commence. We call such tasks theprologueof the static sched-
ule. The polynomial-time algorithm of [5] tells us that 3 is the
minimum clock period we can achieve by retimingG1.

A B C

1 3 2

Figure 1: The simple data-flow graph G1

Chao and Sha [2] presented a unified algorithm which is re-
ferred to asDFG schedulingin this paper. We use this method to
construct a schedule in Figure 3 for the DFG of Figure 1 which sat-
isfies all data dependencies among the nodes of the graph. Since
the repeating part of the schedule of tasks executes every 3 clock
cycles, we say that this is a static schedule withcycle period3,
denotedcy(G1) = 3. Note that each task’s starting time must be
repeated everycy(G1) time steps. Thus, in this case, the length
of the schedule is given bycy(G1). Furthermore, each task is im-
plemented at the beginning of a time step and not between time

A B C

1 3 2

Figure 2: G1 retimed to have cl(G1r)=3

steps; hence we say that this schedule isintegral. Finally, see
that consecutive instances of a task do not overlap, making this
a non-pipelined implementationof the static schedule. This paper
assumes the use of this integral/non-pipelined model.

0 1 2 3 4 5 6 7 8 9 0 1 2 3
TIME:

A A A

B B B B

C C C C

A

Figure 3: The schedule for G1 with cy(G1)=c1(G1r)=3

We note that we have discovered a retiming and static sched-
ule such thatcl(G1r) = cy(G1) for the graph of Figure 1. We
could ask ourselves whether we can always find such a retiming.
In this paper, we propose a new algorithm which will always yield
a schedule whose minimal length is given by the clock or cycle
period. We want to deal with these questions:

1. What is the relationship between retiming and DFG schedul-
ing?

2. Does the existence of a static schedule withcy(G) = c
imply the existence of a legal retiming such thatcl(Gr) =
c?

3. If (2) is not true, is there any way to map the cycle period
of a legal static schedule into the graph model?

4. Is there an efficient graph transformation algorithm based
on the properties from DFG scheduling which produces the
same optimal result?

This paper answers these questions in the next section by demon-
strating the following:

1. We show that retiming and static scheduling are not equiva-
lent. Indeed, DFG scheduling is a more powerful technique
than retiming for minimizing the clock or cycle period of a
DFG.

2. We propose a new graph transformation technique,extended
retiming, which we will show to be equivalent to DFG sched-
uling.

3. We demonstrate an algorithm based on DFGs for finding
extended retimings.

4. We design a constant-time algorithm for verifying the exis-
tence of an extended retimingr which makescl(Gr) � c
for a given integerc.

Finally, we conclude with a summary of our work and a list of
further questions for exploration.

2. EXTENDED RETIMING

We now demonstrate that traditional retiming will not necessarily
result in an optimal schedule and devise a form of retiming that is
equivalent to DFG scheduling.

2.1. The Relationship Between Traditional Retiming and DFG
Scheduling

We began by asserting that, given a DFG G and cycle periodcy(G),
we could always find a retimingr such thatcl(Gr) = cy(G). Un-
fortunately, this doesn’t happen. Consider the DFGG2 in Figure
4. The minimum clock period of this graph is 5. Indeed, it’s easy
to see that, no matter how we position the delays, we have one
zero-delay edge with computation time at least 5. However, the
rate-optimal schedule onG2 shown in Figure 5 has cycle period 4.

A B C

3 2 3

Figure 4: The sample DFG G2

A

TIME:

B

C C C

B B

A A

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

Figure 5: The schedule of G2 with cy(G2)=4

In general, the minimum value ofcy(G) is less than or equal
to the minimum value ofcl(Gr). The technique of DFG schedul-
ing is more powerful than the traditional technique of retiming in
some sense. However, the advantages of using graph transforma-
tion techniques are clearly visualized and easily understood from
working with graph models. Therefore, we now develop a new
graph transformation technique.

Suppose that we’re allowed to split a node into two pieces. For
example, we could split node B in half to get the DFG of Figure 6.
We see that we can now move a delay from edge (C,A) to the space
between the halves of B and achieve a retimed graph with clock
period 4. We now will augment the traditional retiming technique
by permitting the insertion of a delay between pieces of a split
node. Our new concept will be calledextended retiming.

A C

3 1 1 3

B1 B2

Figure 6: Graph G2 with node B split so that cl(G2r)=4

2.2. The Concept of Extended Retiming

An extended retimingof a DFGG = hV;E; d; ti is a function
r:V!Q such thatt(v) � r(v) 2Z for all v2V. From this definition,
r(v) can be viewed as consisting of an integer part and a fractional
part. The integer partbr(v)c is the number of delays pushedto
eachoutgoingedge ofv, while the fractional part conveys the po-
sition of a delay within a split node. Therefore, the valuedr(v)e is
the number of delays drawnfrom eachincomingedge ofv, and if
dr(v)e � br(v)c = 1, a delay is left inside nodev which splits it
into two subnodes with computation timest(v) � (r(v)� br(v)c)
and t(v) � (dr(v)e � r(v)). For example, an extended retiming
with r(A) = 1, r(B) = 1

2
andr(C) = 0 for the graph of Figure

4 achieves the retimed graph described for Figure 6.
As with standard retiming, we will denote the DFG retimed by

r asGr = hV;E; dr; ti, wheredr(e) = d(e)+dr(u)e�br(v)c is
the retimed delay count of edgee2E. An extended retiming islegal
if dr(e) � 0 for all edgese2E andnormalizedif 0�minvr(v) <
1. In order to normalize an extended retiming, we must subtract
minvbr(v)c from all valuesr(v). We can easily obtain these prop-
erties ofDr from the definition ofdr:

Lemma 2.1 Let G be a DFG andr an extended retiming.

1. The retimed delay count on the pathp : u) v isDr(p) =
D(p)+dr(u)e�br(v)c.

2. The retimed delay count on the cycle` 2 G is Dr(`) =
D(`).

2.3. Scheduling Graphs and Iteration Bounds

Before proceeding to our main result, let us briefly review two
concepts from the literature. Given a DFGG, we construct the
scheduling graphGs = hV;E;w; ti by reweighting each edge
e=(u,v) according to the formulaw(e) = d(e) � t(u)

c
. Figure 7

shows the scheduling graph of our example whenc=3.

A B C

1 3 2
-1/3 0

1/3

Figure 7: The scheduling graph of G1 with c=3

It can be shown that, ifc is a feasible clock period, then the
scheduling graph contains no negative-weight cycles. Thus, we
further alterGs by adding a nodev0 and zero-weight directed
edges fromv0 to every other node inG. Definesh(v) for every
node v to be the length of the shortest path fromv0 to v in this
modifiedGs. For example, in the graph of Figure 7, we note that
sh(A) = 0 andsh(B) = sh(C) =- 1

3
.

As we’ve stated, aniteration is simply an execution of all
nodes of a DFG once. The average computation time of an itera-
tion is called theiteration periodof the DFG. If a DFGG contains
a loop, then the iteration period is bounded from below by theit-
eration bound[6] of G, which is denotedB(G) and defined to be
the maximum time-to-delay ratio of all cycles inG. For example,
the graph in Figure 1 contains only one loop, which has two delays
and a total computation time of 6; thusB(G) = 3 for this graph.
The schedule for this graph displayed in Figure 3 has an iteration
period of 3. In this situation, when the iteration period of a static
schedule equals the iteration bound of the DFG, we say that the
schedule israte-optimal.

Since the iteration bound for the graph of Figure 1 is 3, and all
nodes of this graph are 3 or smaller, Theorems 2.3 and 3.5 of [2]
tell us that the minimum achievable cycle period for this graph is
3. We can then produce the static DFG schedule in Figure 3 by
constructing the scheduling graph and then computingsh(v) for
each of the nodes. We can then use this information to create the
schedule of Figure 3.

2.4. The Equivalence of Extended Retiming and DFG Schedul-
ing

The equivalence of a traditional retiming and the absence of neg-
ative cycles in the scheduling graph was established for unit-time
DFGs in [5]. We will now outline the proof (due to space limita-
tions) of a similar relationship forgeneral-timeDFGs:

Theorem 2.1 LetG = hV;E; d; ti be a (general-time) DFG. Let
c be a positive integer witht(v) � c for all v. Then there is a legal
extended retimingr on G such thatcl(Gr)� c if and only if the
scheduling graphGs contains no negative-weight cycle.

Proof:
By Theorem 11 of [5],cl(Gr) � c implies the absence of

negative weight cycles in the scheduling graph. On the other hand
assume thatGs contains no negative-weight cycle. For every node
v define

r(v) = bsh(v)c+
c

t(v)
(sh(v)� bsh(v)c) : (1)

It can be proven thatbsh(v)c � r(v) < bsh(v)c + 1 for
all v under these circumstances. Furthermore, by the method of
Theorem 11 of [5], we can show thatr is a legal extended retiming
of G. It remains to be shown thatcl(Gr)� c.

Let p : u) v be a path withT (p) > c. Let s : v0) u and
q : v0) v be the paths in the modifiedGs such thatsh(u) =

W (s) andsh(v) = W (q). SinceW (p) = D(p) � T (p)�t(v)
c

by
definition, we see that

D(p) + sh(u)� sh(v) �
T (p)� t(v)

c
> 0:

There are now three cases:

1. If sh(u) andsh(v) are both integers, thenr(u) = sh(u)
andr(v) = sh(v). In this case,Dr(p) = D(p) + sh(u)�
sh(v), which is integral and greater than or equal to a strictly
positive fraction. We can thus concludeDr(p) � 1 in this
case.

2. If sh(u) is not an integer, then

Dr(p) = D(p)+dr(u)e�br(v)c

= D(p) + bsh(u)c�bsh(v)c+ 1
� bD(p) + sh(u)� sh(v)c+ 1

�
�
T (p)�t(v)

c

�
+ 1 � 1.

3. If sh(u) is an integer butsh(v) isn’t, then

bsh(u)c � bsh(v)c > bsh(u)� sh(v)c

and we derive in this case

Dr(p) > bD(p) + sh(u)� sh(v)c � 0:

HenceDr(p) is an integer strictly greater than zero in this
case.

In any caseDr(p)� 1, and by Lemma 4 of [5],cl(Gr)� c.
2

For example, when applied to the graph of Figure 4 with c=4,
the retiming described in this theorem yieldsr(A) = 0, r(B) =-
1
2

andr(C) =-1, precisely the retiming which produces the graph
of Figure 6. Normalized, this becomesr(A) = 1, r(B) = 1

2
and

r(C) = 0. Let’s now summarize what we’ve proven so far:

Theorem 2.2 LetG be a DFG andc an integer. The following are
equivalent:

1. There is a legal extended retimingr onG such thatcl(Gr)�
c.

2. There exists a legal, integral, repeating, static schedule for
G under the non-pipelined implementation with cycle pe-
riod c.

3. The scheduling graph (forG that’s associated withc) Gs

contains no cycle having negative delay count andt(v) � c
for all nodesv of G.

4. The iteration boundB(G) � c and t(v) � c for all nodes
v of G.

Proof:
The equivalence of (1) and (3) is established in Theorem 2.1.

The equivalence of (3) and (4) is proven in Lemma 3.1 of [2].
Finally, the equivalence of (4) and (2) is shown in Theorems 2.3
and 3.5 of the same paper.

2

See that we have also developed a constant-time algorithm for
checking the legality of a clock period. If we know the values of
B(G)and the maximumt(v) in advance, we simply verify that they
are smaller than our chosenc and can know almost immediately
if there’s an extended retiming which gives uscl(Gr) � c: Tradi-
tionally, this check has taken O(jV j jEj) time. This theorem also
shows that extended retiming can produce a clock period as low
as the cycle period obtained by DFG scheduling. Therefore, both
techniques are equivalent.

3. CONCLUSION

We have seen that our new method of extended retiming permits
us to transform any data-flow graph to one whose clock period
matches the cycle period of any of its legal schedules. We have
also demonstrated that an integer is a legal choice for either the
clock or cycle period of the retimed graph provided that it is an
upper bound on the computation times of all nodes of the graph
and on the iteration bound of the graph.

We have done this without considering the effect of unfold-
ing. Many good results have come from combining the tradi-
tional retiming and unfolding techniques when optimizing data-
flow graphs [3]. It is our future work to study the combination of
extended retiming and unfolding.

Throughout this paper, we have assumed the use of integral
schedules under a non-pipelined implementation. We also have
the possibilities offractional schedules, where operations may be
scheduled at any time (not necessarily at integral points), and pipe-
lined implementations [2]. Combinations of these four parameters
(integral or fractional DFG scheduling, pipelined or non-pipelined
implementation) give us three additional models to explore as we
discuss extended retiming.

4. ACKNOWLEDGEMENT

This work is partially supported by NSF grants MIP95-01006 and
MIP97-04276, and by the A.J. Schmitt Foundation.

5. REFERENCES

[1] P.-Y. Calland, A. Darte, and Y. Robert. Circuit retiming ap-
plied to decomposed software pipelining.IEEE Transactions
on Parallel and Distributed Systems, 9:24–35, 1998.

[2] L.-F. Chao and E. H.-M. Sha. Static scheduling for synthesis
of DSP algorithms on various models.Journal of VLSI Signal
Processing, 10:207–223, 1995.

[3] L.-F. Chao and E. H.-M. Sha. Scheduling data-flow graphs
via retiming and unfolding. IEEE Transactions on Parallel
and Distributed Systems, 8:1259–1267, 1997.

[4] A. Darte, G.-A. Silber, and F. Vivien. Combining retiming and
scheduling techniques for loop parallelization and loop tiling.
Parallel Processing Letters, 7:379–392, 1997.

[5] C.E. Leiserson and J.B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6:5–35, 1991.

[6] M. Renfors and Y. Neuvo. The maximum sampling rate of
digital filters under hardware speed.Transactions on Circuits
and Sampling, CAS-28:196–202, 1981.

[7] C.-Y. Wang and K.K. Parhi. Resource-constrained loop list
scheduler for DSP algorithms.Journal of VLSI Signal Pro-
cessing, 11:75–96, 1995.

[8] A. Zaky and P. Sadayappan. Optimal static scheduling of se-
quential loops on multiprocessors. InProceedings of the In-
ternational Conference on Parallel Processing, pages III 130–
137, 1992.

