
A ROOTFINDING ALGORITHM FOR LINE SPECTRAL FREQUENCIES

Joseph Rothweiler

Sanders, A Lockheed Martin Company
65 River Road

Hudson, NH 03051
joerothweiler@ieee.org

ABSTRACT

Published techniques for computing line spectral frequencies
generally avoid rootfinding methods because of concerns about
convergence and complexity. However, this paper shows that sta-
ble predictor polynomials have properties that make rootfinding an
attractive approach.

It is well known that the problem of finding the LSF’s for an
N’th order predictor polynomial can be reduced to the problem of
finding the roots of a pair of polynomails of order N/2 with real
roots. I extend this result by showing that these polynomials have
the following properties:

1. It is possible to select starting points for a Newton’s rootfind-
ing method such that the iteration will converge monotoni-
cally to the largest root.

2. The Newton iteration can be modified to speed up the pro-
cess while still maintaining good convergence properties.

In this paper, I present the rootfinding procedures with proofs
of their good convergence properties. Finally, I present experimen-
tal results showing that this procedure performs well on speech
signals, and that it can be implemented on fixed-point DSP’s.1

1. INTRODUCTION

The line spectral frequency (LSF) parameter set is an alternate rep-
resentation of the parameters of an autoregressive (AR) model.The
LSF representation is particularly attractive in medium to low rate
voice coding systems because the parameters can be efficiently
quantized. It is used in the U.S. Federal Standard CELP coder,[1]
and many other voice coding algorithms.

A disadvantage of the LSF representation is that the param-
eters are defined as the roots of a polynomial. Root finding is
usually undesirable in a real-time system because it is an itera-
tive procedure which is subject to convergence problems, is sen-
sitive to roundoff errors, and has unpredictable processing delays.
To avoid these problems, existing systems typically use exhaustive
searches and similar techniques with high — but bounded — com-
putational complexity. A notable exception is a recent paper by
Wu and Chen[2].

In this paper, I show that convergence problems can be com-
pletely avoided by taking advantage of the special structure of the

1Prepared through collaborative participation in the Advanced
Telecommunications/Information Distribution Research Program (ATIRP)
Consortium sponsored by the U.S. Army Research Laboratory under Co-
operative Agreement DAAL01-96-2-0002

polynomials that must be solved. Root-finding methods therefore
become a very attractive method of finding the LSF’s.

This paper is organized as follows:
Section 2 is a brief review of LSF computation, including

polynomial transformations based on original work by Soong and
Juang[3], which was later extended by Kabal and Ramachandran[4]

Section 3 demonstrates that the reduced polynomials have prop-
erties which guarantee that Newton’s root finding method will con-
verge monotonically to the roots. I also show that an accelerated
version of Newton’s method will converge faster while remaining
well-behaved. Finally, I discuss deflation procedures to ensure sta-
bility of the entire root finding process.

Section 5 presents experimental results which show that the
proposed method works well on AR models derived from real
speech data. It also describes some results of experiments with
a version of this algorithm that uses fixed-point arithmetic.

2. BASIC DERIVATION

Start with the prediction error filter of orderP :

A(z) = 1�

PX
k=1

akz
�k (1)

and define the symmetric and antisymmetric filters

Fs(z) = A(z) + z�P�1A(z�1) (2)

Fa(z) = A(z)� z�P�1a(z�1) (3)

Assuming that1=A(z) is a stable filter, Soong and Juang showed
that the roots ofFs andFa (A) lie on the unit circle, (B) are inter-
leaved, (C) are distinct, (D) exactly two of the roots are at+1 and
�1.

Removing the roots at�1 gives

G1(z) =
Fs(z)

1 + z�1
G2(z) =

Fa(z)

1�z�1
P even (4)

G1(z) = Fs(z) G2(z) =
Fa(z)

1�z�2
P odd (5)

Note that in either case,G1 andG2 are symmetric polynomials of
even order (2M1 and2M2), so either polymonial can be written
as (after substitutingz � ej!):

G(z) =

2�MX
i=0

gie
�ji! (6)

void cos2x(double g, int g_order) {
int i,j;
for(i=2; i<= g_order; i++) {

for(j=0; j <= g_order-i; j++) {
g[j+2] -= g[j];
g[j] *= 2.0;

}
}

}

Figure 1: Conversion fromY (!) to a polynomial inx.

=

M�1X
i=0

�
gie

�ji! + gM�ie
�j(M�i)!

�
+ gMe�jM!

= e�jM!

"
M�1X
i=0

2gicos[(M � i)!] + gM

#

= e�jM!

"
MX
k=0

ck cos(k!)

#
� e�jM!Y (!) (7)

where

c0 � gM and ck � 2gM�k ; k = 1; : : :M (8)

Because the roots all have the same modulus, it is convenient
to transform the polynomials from the z domain into thex �

cos(!) domain.
Soong and Juang convertY (!) to a polynomial inx using

multiple-angle relatons, while Kabal and Ramachandran used Cheby-
shev polynomials. The author[5] recently proposed the following
extension of this work that is based on the recursive application of
Chebyshev polynomial relations.

Write equation 7 above as

Y (x) = c0T0(x) + : : : + cNTN(x) (9)

wherex = cos(!) andTk(x) � cos(k!) � cos
�
k � cos�1(x)

�
is the Chebyshev polynomial of orderk. Using the relation

Tk(x) = 2xTk�1(x)� Tk�2(x) (10)

we can transformY (x) to the form

Y (x) = xY 0(x) + c00 (11)

WhereY 0 is a sum of Chebyshev polynomials up to orderN �

1. Recursively applying this transformation toY 0, (a total of N-1
times), we finally obtain

Y (x) =

NX
k=0

c0kx
k (12)

The advantage of this formulation is that it suggests an excep-
tionally simple mechanization of the transformation, as shown in
subroutinecos2x of Fig. 1. In this program, Eq. 10 is imple-
mented as a single arithmetic operation. The inner loop performs
the transformation of Eq. 11, while the outer loop repeats this
transformation to obtain the form of Eq. 12.

After this transformation, we have a pair of polynomials in x,
whose roots

1. are distinct,

2. are interleaved,

3. are real and lie in the range(�1;+1).

3. NEWTON’S METHOD AND AN ACCELERATED
VARIATION

Stoer and Bulirsch[6] derive several useful properties of rootfind-
ing methods based on the following general procedure:

Given a polynomialp(x) with derivativep0(x), start with an
initial guessx0 for the root location, and refine the guess using the
recursion

xi = xi�1 � �
p(xi�1)

p0(xi�1)
(13)

The case� = 1 is the standard Newton’s iteration, while the case
� = 2 corresponds to an accelerated procedure to be discussed
below.

For the case�=1, Stoer and Bulirsch prove the following (The-
orem 5.5.5, p. 272):

Theorem 1 Let p(x) be a polynomial of degreen � 2 with real
coefficients. If all roots�i, �1 � �2 � : : : � �n , of p(x) are
real, then Newton’s method yields a convergent strictly decreasing
sequencexk for any initial valuex0 > �1.

It has already been proven that the roots ofY (x) satisfy the
stated conditions on the roots, and that all roots lie in the range
(�1; 1). Therefore, if we start with an initial guess of 1, Newton’s
method will converge monotonically to the most positive root of
Y (x). It is easy to see that this same theorem guarantees that an
initial guess of -1 will cause Newton’s method to converge mono-
tonically to the most negative root. After finding these outermost
roots, we can divide them out to reduce the polynomial order by 2.
This procedure can then be repeated to locate the other roots.

Stoer and Bulirsch also prove a theorem that applies to the case
� = 2 (Theorem 5.5.9, p. 274):

Theorem 2 Let P (x) be a real polynomial of degreen � 2, all
roots of which are real,�1 � �2 � : : : � �n . Let�1 be the largest
root of p0(x) : �1 � �1 � �2. (For n = 2, we also require that
�1 > �2). Then for everyz > �1, the numbers

z0 := z �
p(z)

p0(z)
; y := z � 2

p(z)

p0(z)
; y0 := y �

p(y)

p0(y)
(14)

are well defined and satisfy

�1 < y ; �1 � y0 � z0: (15)

This theorem is depicted graphically in Fig. 2. Here,z is the
initial guess for the root, andy is the result of one double-step
iteraton. There are 3 possibilities:y = �1, y > �1, andy < �1.
In the first case, we have found the root. In the second case (no
overshoot), we can use y as the new starting point for a double-
step iteration. In the final case (y overshoots the root location),
we can compute y’, which is a valid starting point for a single-
step iteration. We know thaty > �1 � �2, which guarantees that
overshoots can be detected by a difference in signs betwenp(y)
andp(z).

Therefore, the algorithm for finding the largest root of g(x) is:

1. Start with an initial guess ofx0 = 1 for the root location.

z

y

z’

y’β1 ξ1

Figure 2: Graphical depiction of the convergence of the second-
order Newton iteration

2. Compute an updated estimatexi+1 using the double-step
iteration.

3. if sign(xi+1) = sign(xi), incrementi and repeat step 2.

4. Otherwise, begin a single-step Newton iteration starting at
xi+1.

5. Continue the single-step iteration until the root is located
with sufficient precision.

Stopping criteria will be considered in the next section.
It is obvious that the same procedure will also converge to the

most negative root of g(x) if a starting point of -1.0 is used.

3.1. Deflation.

A common problem in rootfinding is that numerical errors intro-
duced while dividing off the initial roots can cause significant er-
rors in the values of later roots. There are rootfinding procedures
that perform all computations on the original polynomial, thus mit-
igating the effects of finite arithmetic precision. However, these
procedures involve substantially more computation, so deflation
is preferred in time- critical applications if stability can be main-
tained.

It can be shown that the harmful effects of deflation are mini-
mized if (Stoer and Bulirsch, p. 278):

� The root of largest absolute value is divided off, and

� The coefficients of the deflated polynomial are computed in
reverse order.

A program was written based on these constraints, and the ex-
perimental results (next section) show that it gives good results for
predictor polynomials computed from speech signals.

4. THE PROGRAM.

A complete program implementing this algorithm is available on
the web athttp://www.xtdl.com/ r̃othwlr . Tests were
run to select a good stopping criterion for the root-finding iteration
and to evaluate the complexity for implementation on a fixed-point
digital signal processor.

4.1. Stopping criterion.

The iteration terminates when eitherp2(xi) < T1 or when(xi �
xi�1)

2 < T2. To select the best stopping criterion and the opti-
mum threshold, a series of tests were run to evaluate the depen-
dence of the error on the thresholds. The DR1 accent group of
training data in the TIMIT data base[7] was used for testing.

To measure the accuracy of the rootfinder, the computed pole
locations were substituted back into the originalG1 andG2 poly-
nomials and the polynomial values recomputed. The quality pa-
rameter is thus defined as

� =

vuut 1

N1

N1X
i=0

G2
1(x1;i) +

1

N2

N2X
i=0

G2
2(x2;i) (16)

Plots of error as a function of the threshold value for the first
stopping criterion are shown in Figures 3. It will be seen thatT1
values between10�7 and10�15 give essentially the same accu-
racy (limited by the machine precision). Similar results were ob-
tained forT2.

As shown in the figure, computations were performed using
both forward and reverse deflation. Results show that reverse de-
flation gives a slight but consistent improvement in accuracy.

4.2. Complexity.

A second set of runs was made on the same data set in order to
determine the relationship between model order and complexity.
The threshold was set to10�8, based on the results of the previ-
ous tests. These tests all used reverse deflation, but the rootfinder
was optionally patched to use the conventional Newton iteration
instead of the accelerated version.

The program as presented includes statements to count multiply-
accumulate, addition- subtraction, and division operations. I am
assuming that this program will typically be run on a Digital Sig-
nal Processor which has a single cycle multiply-accumulate in-
struction.

As plotted in Fig. 4, the complexity shows a linear relation-
ship with model order, and worst-case complexity is only about
twice the average complexity. This shows that the algorithm can
be applied to real speech data without fear of excessive run times.

5. REAL-TIME IMPLEMENTATION.

A version of this program was written to simulate the effects of
16-bit arithmetic. The simulation was based on the structure of
the Texas Instruments TMS320C50 Processor: all variables are
stored as 16-bit numbers, and a 32-bit accumulator is used for the
computations. Satisfactory operation is obtained provided that:

� All parameters are scaled so that maximum precision is re-
tained at each step.

� Rounding is performed when accumulator values are stored
into 16-bit memory.

� Reverse deflation is used.

Even with these precautions, it was found that numerical er-
rors occasionally caused instability. These instabilities were de-
tected by checking for non-monotonic convergence of the Newton
iteration, and by the use of a loop counter to limit the maximum
number of iterations.

A test program was written to compare the fixed-point and
floating-point versions for a 12’th order model. On a test set of
over 20 000 stable coefficient sets, only 0.3% became unstable
during fixed-point processing. Listening tests confirmed that these
failures had no effect on speech intelligibility. More details of the
tests are available in an unpublished manuscript[8].

6. SUMMARY.

This technique provides a simple and flexible procedure for com-
puting Line Spectral Frequencies for any model order. The pro-
gram is computationally efficient and robust, and has been shown
to be practical for real-time implementation on current DSP’s.

7. REFERENCES

[1] Jr. Joseph Campbell, Vanoy Welch, and Thomas Tremain, “An
expandable error-protected 4800 bps celp coder (u.s. federal
standard 4800 bps voice coder),”Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, pp. 735–738, May
1989.

[2] Chung-Hsien Wu and Jau-Hung Chen, “A novel tow-level
method for the computation of the lsp frequencies using a
decimation-in-degree algorithm,”IEEE Trans. on Speech and
Audio Processing, vol. 5, no. 2, pp. 106–115, March 1997.

[3] F. K. Soong and B. H. Juang, “Line spectrum pair (lsp) and
speech data compression,”Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, vol. 1, pp. 1.10.1–1.10.4, May
1984.

[4] P. Kabal and R. P. Ramachandran, “Computation of line spec-
tral frequencies using chebyshev polynomials,”IEEE Trans.
on Acoustics, Speech, and Signal Processing, vol. 34, no. 6,
pp. 1419–1426, Dec 1986.

[5] Joseph Rothweiler, “On polynomial reduction in the compu-
tation of lsp frequencies,”To be published in IEEE Trans. on
Speech and Audio Processing, 1999.

[6] J. Stoer and R. Bulirsch,Introduction to Numerical Analysis,
Springer-Verlag, 1983.

[7] “Timit acoustic-phonetic continuous speech corpus,” Avail-
able from NTIS. Order No. PB91-505065, Oct 1990.

[8] Joseph Rothweiler, “Rootfinding methods for computing line
spectral frequencies,”Unpublished Manuscript, 1995.

-15 -10 -5

T1

-40

-30

-20

-10

0

L
og

(T
ot

al
 E

rr
or

)
Figure 3: Log LSF error as a function of stopping thresholdT1.
Solid curves are forward deflation, dashed curves are reverse de-
flation. Predictor orders are (top to bottom): 16, 12, 8.

10 15 20 25

AR Model Order

0

50

100

N
um

be
r

of
 M

A
C

’s

Figure 4: Complexity vs. model order. Solid curves are averages,
dashed curves are maximums. For each pair, bottom curve is� =
2, top curve is� = 1

