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Linear block codes in the complex field can be applied in spatial and/or
temporal diversity receivers in order to develop high performance
schemes for (almost-) blind equalization in mobile communications.
The proposed technique uses the structure of the encoded transmitted
information (with redundancy) to achieve equalization schemes based
on a deterministic criterion. Simulations show that the proposed
technique is more efficient than other schemes that follow similar
equalizer structures. The result is an algorithm that provides the design
of channel equalizers in low EbNo scenarios.
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The issue of developing equalization techniques in mobile
communications has received considerable attention recently. The
time-variant nature of the channel behavior suggests the definition of
deterministic cost functions instead of the use of the conventional
stochastic ones. The goal of the deterministic methods is to make use of
the signal structure and to avoid the use of the received signal statistics.
For instance, in a TDMA transmission, the channel is almost stationary
into a burst but non-stationary between bursts. Notice that in
deterministic algorithms, the performance of the equalizer will be
dependent on the information data realization, the channel realization
and the noise realization in a burst. The proposed approach relies on the
availability of redundancy in block-coded modulations for WHPSRUDO
and/or VSDWLDO� GLYHUVLW\ digital receivers. The paper shows that the
knowledge of coded signal structure allows the information recovery
from a deterministic design criterion.

The proposed method can be classified as an DOPRVW�EOLQG (or VHPL�
EOLQG) algorithm or, in other words, it does not introduce a WUDLQLQJ
sequence (or WLPH�UHIHUHQFH) in the transmitted signal but some kind of
information dependent redundancy (FRGH� GLYHUVLW\). In some
equalization methods ([4], among others), the transmitter introduces
redundancy that the receiver uses to identify or equalize the channel.
Although some additional redundancy is also added in our method, the
proposed approach differs in the sense that the redundancy is not
introduced to equalize but used to correct detection errors, too [3].

It is known that if the channel output is oversampled in the time
domain (WHPSRUDO� GLYHUVLW\) and/or in the spatial domain (VSDWLDO
GLYHUVLW\), channel compensation can be performed based on the
received signal second-order statistics only. A recent study [1] used the
Bezout equation to introduce a new blind equalization criterion.
Basically, it proposed an algorithm that maximizes the signal-to-ISI-
plus-noise ratio (SINR) at the equalizer output. Unfortunately, this
algorithm offered high reliability in moderate to high SNR’s scenarios
but showed stability problems at lower SNR’s. Following the same
strategy than the method presented in [1] and [9], the paper shows that
the equalizer performance and stability can be improved by introducing
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a systematic block-coding allowing the channel equalization at low
EbNo scenarios.

The main idea is to combine the information supplied by the received
signal redundancy introduced by a systematic linear block coding
technique to improve the statistical stability of the equalization
technique in presence of noise. The result is a robust scheme that can
be applied to TDMA, DS-CDMA systems in frequency selective
mobile channels, and OFDM systems in frequency flat fading (F3)
mobile channels ([9]). In a practical system, the method presented in
this paper would be complemented by the receiver decoder in order to
exploit the coding redundancy, not only for the channel compensation
(in a first information recovery step) but also for symbol error
correction (decoding step) following the complex field sequence error
correction methods ([5] and [6]).

The next section illustrates the scheme and establishes the problem.
Section 3 describes the linear block coding characteristics and shows
how the structure of the transmitted encoded data can be used in the
design of the equalizer. Section 4 applies these results to any linear
block-code. Finally section 5 presents some simulation results, where it
is possible to see the improvement of the proposed solution.
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Lets consider the following two receiving front-ends (Figures 1a and
1b) corresponding to a discrete-time model for a temporal and a spatial
diversity receiver, respectively. In the time diversity receiver, the
information signal 7>N@ is transmitted through a mobile channel
response &>N@, which distorts the signal and degraded by an AWGN
term :>N@. The received signal is oversampled at % samples per
symbol, and introduced in % different branches. In the other hand, for
the spatial diversity receiver, the same information signal 7>N@ is
transmitted through % diversity branches. It is distorted by % different
channel responses &L>N@ and finally degraded by % AWGN terms
:L>N@.
As far as the spatial diversity receiver corresponds to a polyphase
representation of the temporal diversity receiver, only the spatial
diversity scheme with the following z-transform associated equations
will be considered further on:

%L�]�:�]�7�]�&�]�< LLL ,...,1=+= (1)

Similar equations can be derived for OFDM signals through
frequency-flat fading channels in the time domain (see [1], [9]).
As shown in [1] and [9], the equalization process can be designed
following a blind criterion. The multiple temporal or spatial diversity
branches are combined by means of FIR filters�(L>N@ to generate an
output 5>N@:
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Under noise-free conditions, the perfect equalization criterion requires
5�]� 7�]�� and therefore :
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The Bezout equation [8] guarantees that the previous equation has
solution if and only if the % channel responses have no common zeros,
or in other words { })(...)( ]<GFJ]7 L=  [9].
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A matrix formulation for the method can be found in [9] and is briefly
summarized here in order to approach the problem. As shown in [9],
equation (2) can be written in matrix notation as:

<HU = (4)

where U  is the equalizer output vector, <  is a generalized Sylvester
matrix with the received data and H  is the equalizer weight vector. The
perfect equalization noise-free case can be written as:
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where the received data matrix <  has been split in two parts, W  is the
transmitted data vector and α is an arbitrary multiplicative constant.

In [1] a blind scheme was suggested such that the signal-to-ISI-plus-
noise-ratio (SINR) at the equalizer output is maximized, that is:
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6,15 = (6)

In noisy environments, many stability problems with the 
�

<  matrix

appeared. The goal of the next section is to introduce the use of the
redundancy of linear block-codes in the complex field in order to
improve the algorithm robustness. Both, systematic and non-systematic
codes will be considered.
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Equation (7) depicts the construction of linear block codes using matrix
notation. It describes how to encode a N-symbols data information

vector W  using the code generator Q[N matrix 
F

*  to obtain the Q-

symbols�FRGH�ZRUG ’W :

W*W

F

= (7)

For the sake of simplicity and without loss of generality, we will
consider a V\VWHPDWLF�FRGH for which the encoder matrix (or transform
[2] and [7]) 

F
* becomes:
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for any full rank �Q�N�[N 
U

* matrix. The first k-symbols of the code-

word are always identical to the information sequence to be transmitted
while the other (n-k) symbols are the redundant symbols, that is:
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The decoder applies the �Q�N�[Q check matrix 
F

& over the mobile

channel output data and it is defined as:
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and 
F

* , 
F

&  matrices are defined such that:
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Thus, the check matrix can detect changes between the transmitted
code and the received information. If both sequences are identical, the
null vector will be obtained. On the contrary, the effect of the noise and
the ISI channel introduces differences in the received sequence and the
product of that sequence with the check matrix differs from the null
vector (UHVLGXH or V\QGURPH). To ensure that the encoding process
maintains constant the symbol energy of all the transmitted symbols we
are interested on those transform such that:
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where 
L

J  is the Euclidean norm of the L�WK row vector of 
F

* .

Thus, the two equalizer design equations becomes:
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According to equations (13), the new 61,5 estimate is formulated as:
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This new cost function to be optimized is more robust in presence of
AWGN because the residual 

�
< matrix is not needed. According to

equation (14), the equalizer that maximizes the new signal to noise plus
,6, ratio corresponds to the generalized eigenvector associated with the
maximum generalized eigenvalue:
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As usual, the equalization performance can be optimized if a
delay is allowed in 5>N@�in equation (2), and the best equalizer is
selected as that one which yields the greatest 

PD[
λ  (maximum

6,15
�in equation (15)).
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The interest of the systematic encoding schemes is the low
computational complexity in the decoding process. A more
general framework is given when considering non-systematic
codes and this is the main goal of the this section. As we will see,
the minimum redundancy condition is also derived.
Let us consider, once again, the information vector W  of
dimension N�and a Q[N (Q!N) full rank linear transform 

F
*  in the

data encoding process, such that the transmitted symbol vector ’W
of length Q is given by equation (7), being U Q�N the transmitted
redundancy. As we see, vector W  is contained in the signal
subspace 6 spanned by the N columns of matrix 

F
* .

Let’s consider the orthogonal subspace 6⊥  spanned by an U Q�N
dimensional orthogonal basis and its associated generation matrix

⊥
F

* (FKHFN� PDWUL[). The outputs of the marginal channels

),...,2,1( %LL =&  to the transmitted data ’W  and the channel noise

contributions LZ will force the received data to be contained in
the 6�⊕ �6�⊥ . Basically, the projection of the received data in the
orthogonal subspace 6�⊥  is used by the equalizer to characterize
the channel response and noise distribution 1. The main point is
to establish the minimum required redundancy to ensure the
channel equalization. Three conditions are necessary to ensure a
correct channel compensation:

&RQG���� The % channel responses ),...,2,1( %LL =&  have no

common zeros.
&RQG���� For a channel response length. L, the equalizer length

Y has to satisfy:

1
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&RQG���� The minimum required redundancy U for the correct
channel compensation is given by:

2−+≥ Y/U (17)

The Bezout equation guaranties a solution for equation (3) if and
only if conditions 1 and 2 are satisfied. The third condition is
introduced in this paper to give the minimum redundancy
requirement and its proof. If we consider the generalized
Silverter matrix containing the channel response

�����%���LL 21  =& , the output at each branch will be given by:

�����%���LLL 21   ’ == W&\ (18)

Combining all branches, the equalizer output will be given by:

[ ]+7+ �W7&H<HU ’α=== (19)

The UHVLGXH or V\QGURPH under noise-free conditions has to be
null, or in other words:

[ ] [ ] �H<�*U�*
FF
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Substituting the received data matrix 7&< =  in the previous
equation:
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1 Note that the same idea is used in the blind technique described
in [1] when using the information supplied by the residual matrix

�
<  to estimate the residual ,6, plus noise power.

where [ ]:,:1 Q
G

77 =  is by definition a sub-matrix of 7  matrix

composed by rows � to Q, such that the first column is the
transmitted vector ’W  (orthogonal to matrix ⊥

F
* ).

Defining:
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we have that:
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If the column vectors { } 1 121 ≠+= L�Y������/��L
L

S  are linearly

independent, the only solution for equation (23) is equivalent to
the perfect equalization criterion given in equation (3):
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or, in other words, the minimum required redundancy  for a
perfect channel compensation becomes:
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The simulations display the percentage of realizations over 1000
realizations for which the equalizer output EbNo was higher than the
value indicated in the x-axis. In all cases the transmitted 7'0$
information consisted of 118 436. data symbols plus 10 redundancy
symbols generated with a sub-Hadamard matrix 

U
* . For both cases,

equalization with temporal diversity and spatial diversity, each branch
of the equalizer had four coefficients and four (B=4, Y=16).
For the spatial diversity scenario, the four channel responses were:
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Notice that the four channels have no common zeros. In order to
consider a relatively difficult scenario, the four channels have been
selected such that some of them exhibited a high attenuation in certain
frequencies (in special channels 1 and 3), with some close zeros and
with a non-minimum phase behavior.
Two temporal diversity scenarios have been simulated by taking 4
samples per symbol at the output of channel 1 and 3. The considered
pulse was 0.5 roll-off Nyquist’s  shaping.
In Figure 2, the channel (E1R was 12dB. In both plots, the
performance of the new method (I) was much better than the
performance of the algorithm without linear block codes (II). Notice
that the new method guarantees that with only an (E1R penalty of 0.35
dB for transmitting the redundant symbols, a recovered EbNo gain
always higher than 2 dB for channel 3 and more than 4 dB for channel
1 in the temporal diversity scheme and a significant gain in the spatial
diversity receiver.
An interesting point is to compare the performance of the proposed
method with the time reference minimum mean square equalizer
(Wiener). In these simulations (Figure 3), the performance of the
proposed method (doted line) is compared with the behavior of the
m.m.s.e. solution (solid line) obtained assuming that all the redundant
symbols are D� SULRUL known for training. Only the spatial diversity
receiver has been simulated for EbNo of 12dB and 15dB. In order to
establish an upper bound for the performance, the EbNo obtained for
the unreal case of considering that all the burst symbols are known



during training in a m.m.s.e. equalizer has been also plotted (solid line
with TrSeq=All label).
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Figure 2. Algorithm performance in temporal diversity (upper plot) and spatial
diversity (lower plot) for an  (E1R=12dB. Comparison of the algorithm with (I)

and without (II) the use of linear block codes.
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In this paper linear block codes in the complex field have been
introduced for blind equalization of mobile channels in spatial and
temporal diversity receivers.
The proposed criterion, combining a blind equalization technique ([1]
and [10]) with the redundancy introduced by a systematic linear code,
can be applied over TDMA structures with frequency selective mobile
channels, DS-CDMA systems and OFDM modulation with frequency
flat fading channels.
Spatial and temporal diversity receivers over TDMA structures, in
frequency selective mobile channels, have been considered. The results
show the performance improvement of this new equalization method
over the previous scheme presented in [1] and [10].
The results presented in the current paper can be achieved introducing
codes defined over the complex fields ([5],[6]) that, following the
structure presented in section 3, could be used to correct the errors at
the output of the equalizer.
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Figure 3. Comparison of the proposed method with a time reference m.m.s.e.
equalizer (upper plot for an EbNo=12dBand lower plot for an EbNo=15dB).
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