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ABSTRACT

We consider narrowband angle of arrival estimation in non-
Gaussian (NG) noise channels, such as arises in some indoor
and outdoor mobile communications channels. We develop
a general expression for the Cramer-Rao bound (CRB) for
direction finding using arrays for deterministic signals plus
iid non-Gaussian noise, generalizing the Gaussian CRB.
The CRBs for the noise and direction parameters decouple.
The CRB for direction finding is expressed as a product of
two terms that depend on the noise distribution, and the
signal, respectively. We illustrate the results for a Gaus-
sian mixture pdf, and present simulation results comparing
five direction finding algorithms. An approach based on the
expectation-maximization (EM) algorithm, that simultane-
ously estimates the noise parameters, the signal directions,
and the signal waveforms, is shown to achieve the CRB over
a wide SNR range.

1. INTRODUCTION

We consider narrowband angle of arrival (AOA) estimation
in non-Gaussian (NG) noise channels. Impulsive NG noise
arises due to man-made interference in indoor and outdoor
mobile communications channels. Measurements of outdoor
urban channels reveal automobile ignition noise exceeding
typical thermal noise levels, especially below 500 MHz, e.g.,
see Parsons [1], with implications for military and other
mobile radio channels. Similar indoor measurements show
significant interference in a much wider frequency range due
to various mechanical switching and other devices, e.g., see
Blackard et al [2].

We develop Cramer-Rao bounds (CRBs) for direction
finding using arrays for the general case of deterministic sig-
nals plus iid NG noise. We then consider the specific case
of an L term Gaussian mixture (GM) noise model. The
use of the GM pdf noise model is motivated for several rea-
sons. This model includes thermal Gaussian noise, which
is always present in electronic systems. The GM can well
approximate a very large variety of finite variance symmet-
ric pdfs, and the EM algorithm can be used in practice to
estimate the pdf parameters. GM also includes an approx-
imation to Middleton’s canonical class A model, which has
been studied extensively over the past two decades. Array
processing methods based on GM modeling are therefore a
natural extension of Gaussian methods [3].

2. SIGNAL AND NOISE MODEL
The complex envelope of narrowband array samples for an
m element array is modeled by

n

y(t) = Y a)() +e(t)
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A@)x(t) +e(t), t=1,....N, (1)

where a(8) = [a1(0),...,am(8)]7 is the array response,
there are n sources whose directions are @ = [41,...,0,]7,
A(O) = [a(81),...,a(8n)] is m x n, x(t) is the vector of
complex signal amplitudes, and e(t) is the additive noise
with variance o.. (The superscripts T, %, and H denote the
transpose, complex conjugate, and conjugate-transpose op-
erations, respectively.) We assume the signals are deter-
ministic (conditional model). We model the complex noise
samples as zero-mean iid in space and time, with complex
pdf given by p(e), and assume the real and imaginary parts
are identically distributed and uncorrelated. We also as-
sume p(e) is continuous with continuous first and second
derivatives, and is symmetric around the (zero) mean.

We assume m > n (more sensors than sources), and the
number of sources is known. We note that the standard
methods of estimating the number of sources in Gaussian
noise, such as AIC and MDL, may perform poorly in NG
noise. We have developed an approach for estimating the
number of sources that is based on GM noise modeling, the
EM algorithm, and subspace processing. This work will
be described elsewhere. Estimates of the signals may be
obtained after estimating ©. However, simple least-squares
(LS) is generally not appropriate in NG noise, and alterna-
tive weighted LS schemes can provide significant improve-
ment [3]. Thus, the unknown parameters in (1) are the
source directions, the signal waveforms, and the noise pdf
parameters.

3. CRAMER-RAO BOUND
Consider the complex scalar case
y(t) =s(t) +e(t), t=1,...,N, (2)

where deterministic signal s(t) is parameterized by vector
6, and additive iid non-Gaussian noise e(t) is parameterized
by vector A. Under our assumptions, Ghogho and Swami
[5] have shown that the Fisher information matrix (FIM)



is block diagonal in ¢ and A. Consequently, the achiev-
able accuracy in estimating ¢ is the same whether A is
known or not. We focus on the CRB for 8, slightly gen-
eralizing the real-valued case treated by Swami [6]. Let
y =[y(1), -+, y(N)]. The CRB for any unbiased estimator
of § is given by CRB(é) > J7!, where J is the FIM with

elements

(3)
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The pdf of y(t) is py(y) = pe(y — s), which leads to

where
I\ = /OO Mde. (5)

The integral in (5) is over the complex plane. Using the
circular symmetry of p.(e) this can be written

I\ = ﬂ/oo Mmdm. (6)

Thus the FIM for 8§ consists of the product of two parts,
which depend only on the noise pdf and the signal, respec-
tively. I(A) is the Fisher information for location of the pdf
pe(€). For p(z) Gaussian with variance o, then I(A) = 7./2,
and we recover the Gaussian FIM in (4), and hence the
Gaussian CRB. Also, ()) achieves a minimum over all sym-
metric pdfs when p.(e) is normal.

These results extend to the array case under the as-
sumption of iid noise in both space and time, yielding the
following.

Proposition: Based on the assumptions above, the CRB for
© is given by
B.

CRB(®) = 77, (7)

where

B. {Z Re [X7()DP[I — A(AT A)7 ATIDX (1)] } ,
®)
and I(A) is given by (6).

Here, X (t) = diag(zi(t), -, zn(t)), and D is a ma-
trix with sth column given by da(6)/df evaluated at 6§ = 6;.
From the preceeding we note that the FIM is block diagonal
in § and A, so the achievable accuracy in direction finding
is the same regardless of whether the noise parameters are
known or not. Again, for p.(e) Gaussian, then I(A) = o./2
and we recover the iid Gaussian CRB (see Theorem 4.1 of
Stoica and Nehorai [4]). Thus, (7) generalizes the Gaus-
sian case to iid non-Gaussian noise, and may be readily
evaluated for various NG pdf families such as generalized
Gaussian or generalized Cauchy, e.g., see Kassam [8].

4. GAUSSIAN MIXTURE NOISE

Consider the L-term Gaussian mixture (GM)

fele) = Z :—;l exp (—%), 9)

=1

a spherically-symmetric, bivariate pdf for the complex ran-
dom variable e = e, + je;. In (9), A represents the prob-
ability that e is chosen from the I® term in the mixture
pdf, with Zlel A; = 1, and the total variance is given by

O = Zlel Aio;. For the case of L = 2 terms, a typical
model for impulsive noise has o2 > o1 with A2 < Aq, so
that large noise samples with variance o2 occur with fre-
quency Az in a background of Gaussian noise with variance
ag1.

Note that addition of further Gaussian terms results in
a new Gaussian mixture of the form (9), and the model al-
ways includes additive Gaussian noise. The GM can well
approximate a very large variety of finite variance symmet-
ric pdfs, and the EM algorithm can be used in practice to
estimate the pdf parameters. GM also includes a good ap-
proximation to Middleton’s canonical class A model, which
is physically motivated.

In principle, the number of mixture terms L can be
determined to fit the observed data, but we have found that
choosing L < 4 terms in (9) provides very good detection
and estimation performance in a variety of cases, including
infinite variance distributions such as Cauchy noise [3, 7].
Therefore we will assume that L is fixed and known.

Using (9) we find that

A A
L T el + el
() :/ L9 r dx
0

L
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(10)
The integral does not easily admit a closed form, but is
readily evaluated numerically.

An example is shown in Figure 1. We show CRBs for
angle estimation of a single source, with N = 10,000, a
uniform linear array with half-wavelength spacing, and m =
8. The source signal was a realization of a narrowband white
Gaussian process. The noise was generated via an L = 2
GM, with o2 /01 = 100, for various values of A1, with the
total variance set to unity. Note A2 = 1 — A1, and A\; =1
corresponds to the additive Gaussian noise case. As A;
increases, a larger portion of the noise power is concentrated
into impulses, with a corresponding decrease in the CRB
(i.e., better estimates are possible).

5. SIMULATION EXAMPLE

A simulation example is presented in this section that com-
pares the direction finding accuracy of several algorithms
with the CRB in GM noise. The results indicate that an
array processing technique based on the EM algorithm [3]
achieves accuracy that is close to the CRB over a wide range
of source power levels. The EM-based algorithm in [3] is an
iterative procedure for maximum-likelihood array process-
ing when the noise is modeled with a GM distribution.
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Figure 1: CRB for AOA estimation in L = 2 term Gaussian
mixture noise, parameterized by Ay = 1 — Az, with 02/01 =

100. A; = 1 corresponds to the Gaussian noise case.

Let us consider a narrowband array processing scenario
in which m = 10 elements are arranged in a line with uni-
form spacing of half-wavelength between elements. Assume
that each element is omnidirectional, so the array response
vector is a(f) = [1,e?™m0 e I(m=Umsin 0T where ¢ is
the elevation angle of the source with respect to the ar-
ray broadside. We will parameterize the source location in
terms of u = sin§. This simulation considers n = 1 source
located at uy = sin#; = 0.1, with average signal power
10log,, [Zi\; |x1(t)|2/N] that varies from 0 dB to 20 dB.
The number of array snapshots is N = 100, and the addi-
tive noise in the observations is iid in space and time with
a GM distribution (9) with L = 2 terms and parameters
AL = 0.95, X = 0.05, 01 = 1,05 = 1000.

The performance of five methods for direction finding
are evaluated in this environment:

1. The standard MUSIC algorithm, which is based on

the eigendecomposition of the sample covariance ma-
A N
trix Ry, = thl y(t)y(t)H.

2. Linear beamforming, which estimates the source lo-
cation as the angle that maximizes the spatial power
spectrum P(8) = a(8)" R, a(8)/[a(8)7a(8)]. Thisis
the maximum likelihood estimator for the case of a
single source in Gaussian noise.

3. Robust covariations-based MUSIC (ROC-MUSIC),
which uses fractional lower-order moments instead of
a covariance matrix. ROC-MUSIC is developed in
[9] in the context of array processing in non-Gaussian
noise that is modeled with an alpha-stable process.

i

4. Pre-processing with a data-adaptive, zero memory

nonlinearity (DA-ZMNL) [10], which limits the in-
fluence of impulsive noise samples while adapting the
“cutoff” to avoid clipping the signal amplitude. The
data that results from DA-ZMNL pre-processing is
used to form a covariance matrix, which is then used
in the MUSIC algorithm or linear beamforming. For
the case in this simulation, MUSIC and beamform-
ing yield identical performance when applied to the
DA-ZMNL covariance matrix.

5. An iterative processing scheme based on the EM algo-
rithm, which is an iterative scheme for maximum like-
lihood estimation in GM noise. This method requires
more computation than the previous four methods,
but i1t provides superior performance. An outline of
the EM algorithm for array processing is provided in
[3]. The initial estimates of source directions for the
EM algorithm are obtained from the DA-ZMNL pro-
cessing described in item 4 above. Iterations of the
EM algorithm then improve the parameter estimates.
The EM algorithm produces estimates of the source
locations, the signal waveforms, and the GM param-
eters. The EM algorithm is formulated using a GM
model for the noise. We use 4-terms in the GM
noise model, because we have found that this pro-
duces good detection and estimation performance in
a variety of non-Gaussian noise environments [3],[7],
including Cauchy noise. In this example, the 4-term
GM model for the noise contains more terms than
the actual noise, which i1s generated with a 2-term

GM distribution.

The direction finding performance is also compared with
the CRB, which is computed using (7), (8), and (10).

Figure 2 contains the simulation results, which are based
on 400 Monte Carlo runs for each value of average signal
power. The vertical axis in Figure 2 is the root-mean-
square (RMS) error in the estimate of the source location
parameterized by u = sin §. Notice that ordinary MUSIC
and BEAMFORMING perform poorly, since they do not
suppress the effects of the impulsive noise. ROC-MUSIC
provides some improvement compared with MUSIC and
BEAMFORMING, but the accuracy of ROC-MUSIC is rel-
atively far from the CRB.

The DA-ZMNL closely approximates the locally opti-
mum (weak signal) nonlinearity for this highly impulsive
noise environment. Thus in Figure 2, it is not surprising
that the DA-ZMNL accuracy is close to the CRB for low
values of the signal power. However, the accuracy of the
DA-ZMNL degrades as the signal power increases. This is
because the DA-ZMNL increases the “cutoff” of the non-
linearity in order to avoid clipping the signal, which also
allows more of the impulsive noise to pass through the DA-
ZMNL. Notice that when the average signal power equals
20 dB, the DA-ZMNL performs at approximately the same
level as ordinary MUSIC and BEAMFORMING.

The EM algorithm achieves accuracy that is very close
to the CRB over the entire range of signal power levels
in Figure 2. Furthermore, the EM algorithm performance
equals the CRB when the average signal power equals 20
dB. A novel feature of the EM algorithm [3] is that it
provides estimates of the signal waveforms using a nonlin-
ear beamforming operation that suppresses impulsive noise.
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Figure 2: Root-mean-square (RMS) error of source lo-
cation estimates for various algorithms in Gaussian mix-
ture noise. The CRB is indicated by the solid line. The
noise distribution is an L = 2 term Gaussian mixture with
AL = 0.95, X = 0.05,01 = 1,05 = 1000.

We have observed results similar to Figure 2 in simulation
experiments involving multiple sources that are spaced by
less than one beamwidth.

5.1. Cauchy noise

We have investigated the performance of the EM algorithm
for array processing when the additive, complex noise sam-
ples follow a bivariate isotropic Cauchy pdf [11] given by

1 1 2
fele) = T (@) ; (11)

where b is a scale parameter. An example is presented in
[3] in which the EM algorithm achieves direction finding
performance that is close to the CRB for Cauchy noise. The
CRB for source location parameters in the case of Cauchy
noise (11) is derived in [11], and it has the form of (7) with
I~ =5b?/3.

In the example presented in [3], the EM algorithm used
a 4-term GM distribution to approximate the Cauchy noise
with pdf (11). For each set of array snapshots y(1),...,
y(N), the EM algorithm yielded GM parameters M, ol =
1,...,4 to model the Cauchy noise samples. It is interest-
ing to compare the Cauchy CRB with the GM CRB cor-
responding to the GM parameters produced by the EM al-
gorithm. This is equivalent to comparing the scaling factor

I(A\)~! = 5b? /3 for Cauchy noise with the scaling factor for
GM I(A1, A2, As, A4, 61,62, 62,64) " computed with (10).
The result of this comparison is as follows for Cauchy
noise with 6 = 1 in (11). The Cauchy CRB scaling factor
is I(\)™' = 5/3 = 1.6667, and the statistics of GM CRB

scaling factors in 500 runs are as follows:

Mean = 1.2695, Median = 1.1908
Standard Deviation = 0.8098

The GM CRBs tend to be slightly smaller than the Cauchy
CRB, which is reasonable since the GM distribution is a fi-
nite variance approximation to the infinite variance Cauchy
distribution. The GM approximation must underestimate
the “variance” of the Cauchy distribution, which reduces

the GM CRB scaling factor.
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