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ABSTRACT

The ADF algorithm for separating two signal sources by
Weinstein, Feder, and Oppenheim is generalized for sep-
aration of co-channel speech signals from more than two
sources. The system con�guration, its accompanied ADF
algorithm, and the choice of adaptation gain are derived.
The applicability and limitation of the derived algorithm
are also discussed. Experiments were conducted for sepa-
ration of three speech sources with the acoustic paths mea-
sured from an o�ce environment, and the algorithm was
shown to improve the average target-to-interference ratio
for the three sources by approximately 15 dB.

1. INTRODUCTION

The problem of separating co-channel speech from their
convolutive mixtures has gained increasing attention re-
cently. A number of co-channel speech separation algo-
rithms utilizing multi-microphone acquisition and second-
order statistics have been proposed in the literature [1][2].
These algorithms do not guarantee unique solutions [1][3][4]
in general. However, because they are simpler than the al-
gorithms based on higher-order statistics, and the empirical
estimates of second-order statistics are usually more reliable
than their higher-order counterparts, they are favorable for
certain applications.
In our previous work [5][6], we showed that the adap-

tive decorrelation �ltering (ADF) algorithm by Weinstein,
Feder, and Oppenheim [1] is e�ective in separating two
speech signals from their convolutive mixtures. We also
developed a number of techniques to improve the e�ciency
and stability of ADF. Although it was stated in [1] that
the ADF algorithm can be extended to separate co-channel
speech signals from more than two sources, the generaliza-
tion is not straightforward and has not been evaluated ex-
perimentally. In the current work, we generalize the previ-
ous two-source ADF algorithm for separation of more than
two speech sources. We start on the three-source case as the
�rst step of the generalization, where details of three-source
co-channel speech separation, including a derivation of sys-
tem con�guration and its ADF algorithm, are provided, and
limitation of the generalized ADF is also discussed in order
to provide insights for its applications. The three-source
separation algorithm is then further generalized for cases
involving M > 3 speech sources.
This paper is organized into six sections. The mathe-

matical model of the three-source co-channel speech envi-
ronment and the objective of co-channel speech separation
are de�ned in Section 2. In Section 3, the con�guration of
the separation system and its ADF algorithm are derived;
the applicability and limitation of the derived algorithm
are discussed. In Section 4, the three-source algorithm is
extended into the general case of M > 3 sources. Experi-
mental results are presented in Section 5 and a conclusion

is made in Section 6.

2. FUNDAMENTALS

2.1. The Three-Source Co-Channel Model
Denoting the source signal from talker j by xj(t), j = 1; 2; 3,
and the signals acquired at microphone i by yi(t), i = 1; 2; 3,
a three-source co-channel speech environment can be de-
�ned, in the frequency domain, as

Y (f) = H(f)X(f) (1)

where Y = [Y1 Y2 Y3]
T , X = [X1 X2 X3]

T , with T

denoting vector transpose, and H is a 3-by-3 matrix with
the (i; j)-th entry asHij . Each transfer functionHij models
the acoustic path between the talker j and the microphone
i. It is assumed that these acoustic paths are unknown and
may be time-varying. A block diagram of this model is
shown in Fig. 1.
Assuming that the target source of microphone i is talker

i, each acquired signal can then be decomposed into two
additive components as

yi(t) = Hii fxi(t)g+

3X
j=1;j 6=i

Hij fxj(t)g (2)

where the �rst term is referred to as the target signal com-
ponent and the second term is referred to as the interfer-
ing component. It is reasonable to assume that the source
speech signals are zero-mean and independent to each other.

2.2. Objective of Co-Channel Speech Separation
The objective of co-channel speech separation is to elimi-
nate the interfering component in each acquired signal and
hence separate the signals from di�erent sources from their
convolutive mixtures. Denoting the output signals of the
separation system by vi(t), i = 1; 2; 3, the frequency-domain
input-output relation of a separation system is

V (f) = F(f)Y (f) (3)

where V = [V1 V2 V3]
T , and F is a 3-by-3 matrix repre-

senting the separation system. If FH is a diagonal matrix,
from Eqs. (1) and (3), vi(t) will contain nothing more than
xi(t), albeit linearly distorted. Therefore, signal separation
is achieved. This separation criterion is used in designing
the separation system F in the next section.

3. CO-CHANNEL SPEECH SEPARATION
FOR M = 3 SOURCES

In this section, the con�guration of the separation system
is �rst determined according to the separation criterion dis-
cussed in the previous section. Then the ADF algorithm
corresponding to this con�guration is derived. The applica-
bility and limitation of the derived algorithm are discussed
at the end of the section.
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Figure 1. Block diagram of the three-source co-
channel speech model
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Figure 2. Block diagram of the three-source co-
channel speech separation system

3.1. A Modi�ed Three-Source Co-Channel Model
Because the number of acquired signals is equal to the num-
ber of source signals and the distributions of the source sig-
nals are unknown, it is impossible to identify the absolute
acoustic paths (e.g. H11 andH21) from the acquired signals.
Instead, only the relative acoustic paths (e.g. H21=H11) are
identi�able. Taking into consideration of this limitation,
Eq. (1) can be modi�ed as

Y (f) = ~H(f) ~X(f) (4)

where ~X =
�
~X1

~X2
~X3

�T
with ~Xj = HjjXj , and ~H is a

3-by-3 matrix with the (i; j)-th entry as ~Hij = Hij=Hjj . It
is straightforward to show that FH is diagonal if and only
if F~H is diagonal.

3.2. System Con�guration
From the above discussion, if the relative acoustic paths
~Hij 's can be identi�ed, an intuitive choice for F is ~H�1,
which yields vi(t) = ~xi(t). However, the quadratic terms

and det~H involved in calculating ~H�1 from ~Hij 's make it
di�cult to implement such a system. In addition, it does
not provide a constructive method for estimating the rela-
tive acoustic paths.
Alternatively, F can be chosen as

F(f) =

"
1 �F12(f) �F13(f)

�F21(f) 1 �F23(f)
�F31(f) �F32(f) 1

#
(5)

with Fij =
�
1� ~Hjk

~Hkj

	�1 � ~Hij � ~Hik
~Hkj

	
, k 2 f1; 2; 3g

and k 6= i; j. Instead of estimating the relative acoustic
paths, Fij 's are estimated and used for separating the sig-
nals. This gives a simpler system con�guration. The block
diagram of the separation system is given in Fig. 2.

3.3. Algorithm Derivation
As in [1], decorrelation between vi(t)'s is used as the crite-

rion in estimating the �lters Fij 's, i.e., E
�
Vi(f)V

�
j (f)

	
= 0,

i 6= j, where � denotes the complex conjugate. By combin-
ing Eqs. (3) and (5), E fV1(f)V

�
2 (f)g = 0 can be expanded

by substituting V1 with Y1 � F12Y2 � F13Y3, to become
E fY1V

�
2 g = F12E fY2V

�
2 g+F13E fY3V

�
2 g. Its time-domain

equivalent can be written as

ry1v2(� ) = f12(�)
 ry2v2(�) + f13(�)
 ry3v2 (�) (6)

where ryivj (� ) = E fyi(t)vj(t� � )g is the cross-correlation
between yi(t) and vj(t), fij(t) is the impulse response of
�lter Fij , and 
 denotes convolution.
If the �lters Fij 's are chosen to be N -tap FIR �lters, the

following vectors can be de�ned accordingly:

f
ij
= [fij(0) � � � fij(N � 1)]T (7)

y
i
(t) = [yi(t) � � � yi(t�N + 1)]T (8)

vi(t) = [vi(t) � � � vi(t�N + 1)]T (9)

and Eq. (6) can be converted into its vector form as

E fv2(t)y1(t)g = E
�
v2(t)y

T

2
(t)
	
f
12
+E

�
v2(t)y

T

3
(t)
	
f
13

(10)
By manipulating E fV1(f)V

�
3 (f)g = 0 in the same way, an-

other linear equation of
�
f
12
; f

13

	
can be formulated as

E fv3(t)y1(t)g = E
�
v3(t)y

T

2
(t)
	
f
12
+E

�
v3(t)y

T

3
(t)
	
f
13

(11)
Following the same procedure, similar linear equation pairs
as Eqs. (10) and (11) can also be formulated for

�
f
23
; f

21

	
and

�
f
31
; f

32

	
, respectively. Putting together the six linear

equations leads to the equation

Rvycfc = rvyc (12)

where

Rvyc = diag fRvyc;23;Rvyc;31;Rvyc;12g (13)

f
c
=
�
fT
12

fT
13

fT
23

fT
21

fT
31

fT
32

�T
(14)

rvyc = E
�
cvyc(t)

	
(15)

with

Rvyc;ij = E
nh

vi(t)
vj(t)

i h
yT
i
(t) yT

j
(t)
io

(16)

cvyc(t) =

2
6664

v2(t)y1(t)
v3(t)y1(t)
v3(t)y2(t)
v1(t)y2(t)
v1(t)y3(t)
v2(t)y3(t)

3
7775 (17)

If all the real parts of eigenvalues of Rvyc maintain pos-
itive when f

c
is varied during adaptive estimation, the fol-

lowing adaptation equation based on the stochastic approx-
imation method by Robbins and Monro [7] can be applied:

f (t+1)

c
= f (t)

c
+ �(t)cvyc(t) (18)

In computing Eq. (18), the output equations for vi(t)'s are
de�ned as

vi(t) = yi(t)�

3X
j=1;j 6=i

yT
j
(t)f (t)

ij
(19)



Based on Eqs. (14) and (17), Eq. (18) can be split into six
adaptation equations for f

ij
's, i.e.,

f (t+1)

ij
= f (t)

ij
+ �(t)vj(t)vi(t) (20)

As in the two-source separation case, the adaptation gain
�(t) controls the convergence of f

ij
's [5]. Following a similar

analysis as in [5], the adaptation gain can be chosen as

�(t) = 2

(
(M � 1)N

MX
i=1

�̂2yi(t)

)�1

(21)

where �̂2yi(t) is the current estimate of the variance of yi
using its L (L � N) most recent samples, and  is a con-
stant satisfying 0 <  < 1 and it can be chosen according
to the time-varying nature of the acoustic environment. To
allow margins for errors in the estimation of the variances,
it was determined through experiments that  = 0.01 to be
a favorable choice.
Eqs. (19), (20), and (21) form the ADF algorithm for

three-source co-channel speech separation.

3.4. Applicability and Limitation
As mentioned above, in order for Eq. (18) of stochastic
approximation to lead to converged estimation of f

c
, the

eigenvalues of Rvyc need to have positive real parts for f
c

within the region of operation. If the adaptation starts
with f (0)

ij
= 0, Rvyc will be positive-de�nite at t = 0 since

vi(t) = yi(t). As f
c
converges to its ideal solution, it can

be shown that the products of the relative acoustic paths
between each pair of signal sources, i.e., ~Hij

~Hji, i 6= j,
play dominating roles in determining the locations of the
eigenvalues. The degree of cross-source interference be-
tween sources i and j at frequency f can be quanti�ed as
the cross-interference level (CIL)

CILij(f) =
�� ~Hij(f) ~Hji(f)

�� (22)

It can be stated that if CILij(f) � 1 for all i 6= j and
f , all the eigenvalues will lie in the right-hand side of the
complex plane. In practice, this condition is satis�ed if each
microphone is placed relatively closer to its target source
than to the interfering sources. Details of these analysis
will be addressed in a future publication.
Furthermore, from Eq. (20), the adjustments for fij(0)

and fji(0) are made by the same term �(t)vi(t)vj(t), and

hence f
(t)
ij (0) � f

(0)
ij (0) is always equal to f

(t)
ji (0) � f

(0)
ji (0).

Therefore, if fij;ideal(0) � f
(0)
ij (0) 6= fji;ideal(0) � f

(0)
ji (0),

fij(0) and fji(0) will never reach their ideal values at the
same time. This limitation will have signi�cant impact
when any of the fij(0)'s is one of the signi�cant weights
in f

ij
. However, this seldom happens if each talker is closer

to its targeting microphone than to the other microphones.

4. THE ADF ALGORITHM FOR M > 3
SOURCES

The three-source separation algorithm derived in the previ-
ous section can be further generalized to the cases involving
M > 3 speech sources. M microphones are used to acquire
the mixed signals, yj(t), j = 1; 2; � � � ;M . The output equa-
tions for the separated signals vi(t), i = 1; 2; � � � ;M can be
obtained by replacing 3 with M in Eq. (19). TheM(M�1)
required �lters, Fij 's, can be estimated by Eq. (20), with
the adaptation gain �(t) determined by Eq. (21).
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Figure 3. The talker-microphone con�guration used
in measuring the acoustic paths
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Figure 4. The frequency responses of the measured
�lters: (a)
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5. EXPERIMENTS

In this section, the experimental conditions of the source
signals and the acoustic environment are �rst described.
Comparisons are made on the source separation perfor-
mance under various cases of source energy levels (SELs)
and CILs.

5.1. Source Signals
A set of speech signals were chosen from the TIMIT
database and were down-sampled from 16 kHz to 10.67 kHz
to become the source signals xj(t)'s in Eq. (1).

5.2. Acoustic Environment
The acoustic paths from each talker to each microphone
were measured in an o�ce according to the con�guration
shown in Fig. 3. As shown by the top-down view of Fig. 3,
the \talkers" were spaced evenly around a round table with
the distance between each pair of adjacent \talkers" at
about 1 m. The microphones were installed about 40 cm
below their respective targeted sources, as shown by the il-
lustration on the right side of Fig. 3. The measured �lter
that models the acoustic path from the \talker" j to the
microphone i is referred to as �Hij , for all (i; j). For each
�lter, the �rst 200 samples of the impulse response were
used, which covered a time span of 18.75 msec at the sam-
pling rate of 10.67 kHz. The frequency responses of �Hij 's

(
�� �Hij(f)

��) are given in Fig. 4.

5.3. System Performance under Various SELs
In this experiment, the source signals were �rst scaled to
generate various SELs, and they were then convolved by
the measured �lters and mixed according to Eq. (1), with
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Figure 5. The cross-interference levels of the mea-
sured �lters: (a) CIL12, (b) CIL23, and (c) CIL31

Table 1. The TIRs (in dB) before and after pro-
cessing under various SELs

Source 1 2 3 Sum

All three sources having the same energy
BeforeProcessing 7.73 8.43 7.97 24.12
After processing 22.28 22.39 22.76 67.43
Improvement 14.56 13.96 14.79 43.31

Source 2 being 20 dB weaker than the others
BeforeProcessing 13.33 -11.57 10.07 11.83
AfterProcessing 23.90 7.89 25.82 57.61
Improvement 10.57 19.46 15.75 45.78

Source 3 being 20 dB stronger than the others
BeforeProcessing -6.67 -9.98 27.97 11.32
AfterProcessing 14.83 15.50 26.16 56.49
Improvement 21.50 25.48 -1.81 45.17

Hij(f) = �Hij(f). The �lter length (N) was set to 400. The
target-to-interfering ratios (TIRs) before and after process-
ing are summarized in Table 1. It can be observed that
the system performance was fairly consistent under a wide
range of SELs. For all cases, the sums of the TIR improve-
ments on the three mixed signals were between 40 to 50 dB,
where greater improvements were obtained on the mixed
signals that had lower TIRs. When the �lter coe�cients
were initialized as 0's, it took several minutes of adaptation
to reach the performance of Table 1. However, 60 to 80 % of
the �nal TIR improvements were reached in a few seconds.
The CILs for the described acoustic environment are plot-
ted in Fig. 5, where the CILs were seen to be close to 1 only
at a few very low or high frequency bands. Since the en-
ergy of speech signals was relatively low in these frequency
bands, the impact of these high CIL values on separation
of speech sources was insigni�cant.

5.4. System Performance under Various CILs
In this experiment, the impulse responses of the cross-
channel acoustic paths ( �Hij , i 6= j) were multiplied by
a constant K, while the impulse responses of the intra-
channel acoustic paths ( �Hii's) remained unchanged. This
resulted in a magni�cation of CILs by K2. The source sig-
nals were of the same energy level. The TIRs before and
after processing are summarized in Table 2. AsK increased,
the sums of the improved TIRs decreased, indicating that
when the CILs become too large, the ADF algorithm would
fail.

Table 2. The TIRs (in dB) before and after pro-
cessing under various CILs

Source 1 2 3 Sum

K = 1: The first case in Table 1.

K = 2:
BeforeProcessing 1.70 2.40 1.95 6.06
AfterProcessing 14.65 13.27 13.59 41.50
Improvement 12.94 10.86 11.64 35.44

K = 4:
BeforeProcessing -4.32 -3.62 -4.07 -12.00
AfterProcessing 2.61 1.01 2.28 5.90
Improvement 6.93 4.62 6.35 17.90

6. CONCLUSION

In this paper, the ADF algorithm for two-source speech sep-
aration by Weinstein, Feder, and Oppenheim is generalized
for M > 2 speech source separation. A method for deter-
mining the adaptation gain is proposed to better balance
between system stability and e�ciency. The applicability
and limitation of the proposed algorithm is discussed. The
experimental results show that the algorithm can e�ectively
improve the TIRs of the co-channel speech signals, provided
that the talkers are not too closely spaced compared to the
distances between each microphone and its target talker.
The evaluation and improvement of the proposed technique
under additional background noises will follow in a future
work.
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