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ABSTRACT

We propose a canonical space-time receiver structure for
wireless communications based on front-end processing with
respect to a �xed basis that is independent of the true
channel parameters. The basis is dictated by a canonical
characterization of channel propagation dynamics in terms
of discrete multipath delays, Doppler shifts, and directions
of arrival that capture the essential degrees of freedom in
the received signal. In addition to dramatically reducing
the number of channel parameters to be estimated, per-
formance analysis demonstrates that canonical space-time
receivers can deliver optimal performance at substantially
reduced complexity compared to existing designs.

1. INTRODUCTION

The use of antenna arrays for enhancing the capacity and
quality of multiuser wireless communication systems has
spurred signi�cant interest in space-time signal processing
techniques [3]. A key consideration in space-time receiver
design is the complex time-varying multipath propagation
environment. The front-end processing in most existing re-
ceivers is based on matched �ltering corresponding to all
the dominant multipaths and corresponding direction of
arrivals (DOAs). In addition to su�ering from high com-
putational complexity in a dense multipath environment,
such receivers rely heavily on accurate estimation of delay
and DOA parameters of dominant scatterers.

In this paper we propose a canonical space-time receiver
structure that is based on processing with respect to a �xed

underlying basis. The basis is derived from a canonical rep-
resentation of the channel propagation dynamics in terms
of discrete multipath delays, Doppler shifts, and DOAs.
These bases capture the essential degrees of freedom in the
received signal. In addition to obviating the need for es-
timating arbitrary delays and DOAs, performance analysis
demonstrates that the proposed receivers deliver optimal
performance at substantially lower complexity compared
to existing designs, especially in dense multipath environ-
ments.

The next section describes the canonical channel repre-
sentation that underlies the proposed receivers. Section 3
describes the canonical receiver structure for coherent pro-
cessing, and Section 4 provides performance analysis. Ex-
amples illustrating the performance are presented in Sec-
tion 5.

2. CHANNEL MODEL

Consider the mobile to base station propagation over the
wireless channel. We assume that the base station employs
a sensor array of aperture D, and initially we consider a
continuous aperture to develop the channel model, as illus-
trated in Figure 1. Let Sa denote the angular spread of the
scatterers involved in signal propagation. We study the ef-
fect of the channel on a single symbol. The signal received
at location � within the array is described as

s�(t) =

Z Sa=2

�Sa=2

e�j
2� sin(�)�

� x�(t)d� ; �D

2
< � � D

2
; (1)

where x�(t) denotes the signal arriving from the direction �,
and � denotes the carrier wavelength. The signal x�(t) is re-
lated to the transmitted spread-spectrum symbol waveform
q(t) via the angle-dependent multipath-Doppler spreading
function H�(�; �):

x�(t) =

Z Tm

0

Z Bd

�Bd

H�(�; �)q(t� �)ej2��td�d�; (2)

where Tm and Bd denote the multipath and Doppler spreads,
respectively, encountered during propagation. We note that
Tm and Bd denote the maximum possible values of the
spreads. In general, the actual spreads will vary with �, and
that dependence is captured by the variation of H�(�; �) as
a function of �.
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Figure 1: Signal reception geometry.

The basic idea behind the canonical characterization of
s�(t) is as follows. Due to the �nite symbol duration T
and essentially �nite bandwidth B of q(t), the received sig-
nal x�(t) exhibits only a �nite number of temporal degrees
of freedom that are captured by uniformly spaced discrete



multipath delays and Doppler shifts [2]:
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where eH�(�; �) is a (�; �)-smoothed version ofH�(�; �) aris-
ing due to the �nite duration and bandwidth of q(t). By the
same token, in a spatial context, the �nite array aperture
dictates that the received signal s�(t) exhibits only a �nite
number of spatial degrees of freedom that are captured by
certain discrete DOAs �l. The following canonical space-
time characterization of the received signal s�(t) identi�es
these essential spatio-temporal degrees of freedom in s�(t).

Canonical Representation

The signal s�(t), 0 < t � T , �D=2 < � � D=2, admits
the following canonical representation

s�(t) � 1
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in terms of the space-time basis waveforms

qklp� (t) = q
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2�kt
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The coe�cients in the representation are uniformly spaced
samples of the smoothed spreading function

bH�(�; �) = DTB

Z eSa
�eSa

Z Bd
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where

H�(�; �) =
1p

1=�2 � �2
Hsin�1(��)(�; �): (7)

The number of terms in (4) is determined by L = dTmBe,
K = dTBde and eP = dDeSae where

eSa = sin(Sa=2)=�: (8)

We note that under certain conditions (discussed later) the
waveforms qklp� (t) constitute an orthogonal basis.

We now develop the canonical signal model for a uni-
form linear array consisting of M sensors with spacing d,
corresponding to a uniform sampling of �. TheM -dimensional
vector s(t) corresponding to s�(t) in (1) becomesZ Sa=2

�Sa=2

Z Tm

0

Z Bd

�Bd

H�(�; �)a(�)q(t� �)ej2��td�d�d� (9)

where

a(�) = [1; e�j2�
d sin(�)

� ; � � � ; e�j2�(M�1)
d sin(�)

� ]T =
p
M:
(10)

The space-time basis functions corresponding to (5) are

uklp(t) = a(�p)q(t � l

B
)ej

2�kt
T

p = 1; � � � ; P �M ; l = 0; � � � ; L: (11)

The angles f�pg corresponding to the canonical spatial sam-
pling in (4) and (5) are chosen so that fa(�p)g form a com-
plete basis for M -dimensional space spanned by the array
response vectors corresponding to the desired signal. Note
that (4) and (5) correspond to a uniform sampling in sin(�)
with a maximum spacing of 1=D, where D = (M � 1)d. In
particular, for d = �=2, the following relationship governs
the choice of �p

sin(�p+1)�sin(�p) =
�

Md
= 2=M; p = 1; � � � ;M�1: (12)

which yield fa(�p)g that span CM . For a given angular
spread Sa of the desired signal, a subset of f�pg of size
P � sin(Sa=2)(M�1)+1 can be chosen to span the desired
signal subspace. In terms of the basis functions fuklp(t)g,
s(t) admits the canonical representation

s(t) �
LX
l=0

KX
k=�K

PX
p=1

bHklpuklp(t); 0 < t � T: (13)

This forms the basis of the canonical space-time receiver
structures proposed in this paper.

For a direct sequence CDMA system, the spreading
waveform q(t) takes the form

q(t) =

N�1X
i=0

civ(t� iTc)=
p
T ; 0 � t < T (14)

where fcig is the spreading sequence of length N and v(t) is
the chip waveform of duration Tc. A rectangular chip wave-
form is assumed in the results presented here. The band-
width B of the waveform is inversely proportional to Tc and
its precise de�nition a�ects the structure of the resulting
basis waveforms. We will consider bandwidth de�nitions of
the form B � O=Tc where O corresponds to an oversam-
pling factor, typically 2, 4 or 8. When O = 1, choosing
f�kg as in (12) gives a set of approximately orthonormal1

set of basis functions fuklp(t)g,2 albeit at the expense of
a loss of accuracy in the representation (13) in the case of
arbitrary multipath delays. The accuracy of (13) can be im-
proved by increasing the oversampling factor O, although
at the expense of losing orthogonality of the basis functions
fuklp(t)g [4, 2].

3. COHERENT RECEIVER STRUCTURE

Here we address single-user binary antipodal communica-
tion with coherent reception. We consider a discrete mul-
tipath slow-fading environment with delay spread Tm � T
so that intersymbol interference is negligible and symbol-
by-symbol detection su�ces. Furthermore, we assume suf-
�ciently slow fading so that Doppler e�ects are negligible.

1With respect to the inner product hx;yi
:
=
R T
0
y
H(t)x(t)dt.

2Due to the correlation properties of the spreading sequence.



The number of dominant multipath components is denoted
by LT . The fading coe�cient �l for the l-th path is assumed
to be approximately constant within a symbol and uncor-
related with fading on other paths. The M -dimensional
complex baseband signal within one symbol duration at the
receiver is given by

r(t) = s(t)b+ n(t); 0 � t < T (15)

where b is the data symbol. The noise vector n(t) is assumed
to be complex Gaussian with zero mean and E[n(t)nH(t0)] =
N0�(t� t0)IM where IM is a M �M identity matrix. The
signal s(t) can be written as

s(t) =

LTX
l=1

�la(�l)q(t� �l) (16)

where �l 2 [�Sa=2; Sa=2] and �l 2 [0; Tm] are DOA and
path delay corresponding to the l-th path, and a(�) denotes
the array response for DOA �.

Conventional coherent space-time receivers, such as those
proposed in [3], are based on the test statistic

Z = Re

(
LTX
l=1

�̂lhr(t);a(�̂l)q(t� �̂l)i
)

(17)

which require estimates of the DOA, delay, and fading of
each multipath component. The detected symbol is given
by sgn(Z). This receiver performs matched-�ltering to all
the multipath components, resulting in high complexity in
a dense multipath environment. Furthermore, the perfor-
mance depends on the quality of the parameter estimates.

The canonical representation (13) provides a new frame-
work for space-time processing that eliminates the need for
DOA and delay estimates.3 This representation suggests a
canonical space-time receiver structure de�ned by the basis
functions in (11). The canonical space-time receiver maps
the received signal r(t) onto the basis functions to form the
test statistic:

Z = Re

(
LX
l=0

PX
p=1

Ĥlphr;ulpi
)

(18)

where fĤlpg are estimates of the canonical channel coef-

�cients. In this paper, we assume perfect fĤlpg estimates
that are obtained by projecting a noise-free pilot signal onto
the canonical subspace.

We note that an increase in the multipath density does
not a�ect canonical receiver performance as long as the ba-
sis functions span the signal space. Furthermore, the canon-
ical receiver can easily adjust the number of basis functions
to accommodate changes in the angular spread Sa and de-
lay spread Tm. For even modestly dense multipath envi-
ronments, the complexity of the canonical receiver is sub-
stantially less than that of the conventional receiver since
fewer channel parameter estimates are required and fewer
matched �lters need to be implemented.

3All that is needed is synchronization to a global delay and
DOA to \align" the basis, which is required in all receivers.

4. PERFORMANCE ANALYSIS

The performance of both receivers is compared based on the
symbol-error probability (Pe) assuming perfect estimates

of all multipath parameters f�̂l; �̂l; �̂lg for the conventional
receiver, and fĤlpg for the canonical receiver. De�ne

AT = [a(�1); � � � ; a(�LT )];
AR = ones(1; L+ 1)
 [a(�1); � � � ;a(�P )] (19)

and

QT (t) = diagfq(t � �1); � � � ; q(t� �LT )g;
QR(t) = diagfq(t); q

�
t� O

Tc

�
; � � � ;

q
�
t � LO

Tc

�
g 
 IP (20)

where 
 denotes Kronecker product, ones(I;J) a I � J ma-
trix with 1 for all the entries, and diagf:g forms a diagonal
matrix of the elements inside the bracket. Also de�ne

Rw =

Z T

0

QR(t)A
H
RARQR(t)dt ;

Rs =

Z T

0

QR(t)A
H
RATQT (t)dt (21)

Then, the symbol test statistics of the canonical receiver
can be written as:

Z = RefhHRs�b+ hHwg (22)

where

� = [�1; � � � ; �LT ]T ; (23)

h = [Ĥ00; Ĥ01; � � � ; ĤLP ]
T ; (24)

w =

Z T

0

QR(t)A
H
Rn(t)dt (25)

E[wwH ] = N0Rw

It can be shown that

h = R
y
wRs� (26)

where (y) denotes Moore-Penrose pseudoinverse. Hence
(22) can be written as

Z = �HRH
s R

y
wRs� +Ref�HRH

s R
y
w�g (27)

Assuming equally likely symbols and � is complex Gaus-
sian with zero mean and E[��H ] = EILT =(N0LT ),

4 where
E is the total transmitted energy, Pe is given by [1]:

Pe =
1

2

L0X
l=1

L0Y
i=1;i6=l

�l
�l � �i

�
1�
r

��l
��l + 1

�
: (28)

where � = E=(N0LT ) and f�lg are the non-zero eigenvalues
of matrix �

:
= RH

s R
y
wRs. Notice that forO = 1, Rw = ILT

since (11) yields an orthogonal basis.
The Pe of the conventional receiver is analyzed in an

analogous manner since its test statistic Z is a special case

of (27) where Rs = Rw =
R T
0
QT (t)A

H
T ATQT (t)dt:

4Uncorrelated scatterer model [1].



5. EXAMPLES

Two scenarios are consider to contrast the canonical and
conventional receivers. As noted in Section 3, the canonical
receiver only requires estimates of the canonical channel co-
e�cients, while the conventional receiver requires estimates
of all multipath DOAs, time delays, and fading parame-
ters. For comparison purposes, we assume all parameters
required are estimated perfectly. Although unrealistic, this
assumption provides an upper bound on performance.

An eight element uniform linear array is assumed with
half-wavelength spacing. A length-31 M sequence serves as
the spreading code, and Pe as a function of SNR (= E=N0)
is used as the performance measure.

Example 1. space-only processing. A dense mul-
tipath environment with angular spread Sa of �=5 is as-
sumed with zero delay spread (Tm = 0). There are a total
of 21 multipath arrivals with DOAs uniformly distributed
on [��=10; �=10]. The canonical receiver is based on up
to eight beams with directions chosen according to (12)
to obtain �k 2 f�0:34�;�0:21�;�0:12�;�0:04�g. Figure
2 depicts the performance of the conventional and several
canonical receivers based on di�erent numbers of beam di-
rections. The receiver with \2 beams" uses the directions
f�0:04�g, \4 beams" uses f�0:12�;�0:04�g, \6 beams"
uses f�0:21�;�0:12�;�0:04�g, while \8 beams" uses all
eight �k. The 2 beam canonical receiver experiences a 7
dB SNR loss at Pe = 10�4 since the beams with direc-
tions f�0:04�g do not span the space corresponding to the
angular spread of the multipath, (j�j < �=5). However,
as suggested by the canonical signal model, 4 beams are
su�cient to represent the given angle spread, as evident
from the nearly identical performance of the canonical re-
ceiver with 4, 6 or 8 beams and the conventional receiver
which is exactly matched to the DOAs. Note that the con-
ventional receiver requires estimates of 21 � 2 DOA and
fading parameters and forms 21 beams, whereas canonical
receiver requires estimates of at most 8 channel parameters
and forms at most 8 beams.
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Figure 2: Space-only processing: conventional vs.
canonical with di�erent number of beams.

Example 2. Space-time processing. We repeat Ex-
ample 1 with Tm = 0:9375Tc, using a total of 21�16 multi-
path components distributed evenly within [��=10; �=10]�

[0; 0:9375Tc]. The canonical representation samples at DOAs
f�0:12�;�0:04�g and delays f0; Tc=O; 2Tc=O; : : : ; Tcg where
O = 1; 2; 4; 8 is the oversampling factor. Figure 3 depicts
the performance of the conventional and canonical receivers
with di�erent oversampling factors. At Pe = 10�4 the
canonical receivers display an SNR performance loss be-
tween 3 dB (O = 1) and 0.5 dB (O = 8). The perfor-
mance loss in canonical receiver is a consequence of the
band-limited approximation in (3) and resulting error in the
approximation for the received signal. This error decreases
as O is increased [4] and the performance loss decreases.
Note that the conventional receiver requires estimates of
21 � 16 � 3 delay, DOA, and fading parameters and im-
plementation of 21� 16 space-time �lters. In contrast, the
canonical receiver with O = 8 only requires estimates of
4� 9 channel coe�cients Ĥlp and implementation of 4� 9
space-time �lters.
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Figure 3: Space-time processing: conventional vs.
canonical with di�erent oversampling factor O.

6. DISCUSSION

In practice all receivers have limited operational bandwidth.
This limits the accuracy of closely-spaced delay estimates in
a dense multipath environment and also limits the bene�ts
of oversampling. Even if joint angle-delay estimation frame-
works [3] are employed, a large number of observations and
complex algorithms are necessary to obtain accurate param-
eter estimates for the conventional receiver. The canonical
receivers have reduced complexity and are likely to be far
more robust to channel estimation errors associated with
limited data and the presence of noise.
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