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ABSTRACT
Loss of coded data during its transmission can affect a de-

coded video sequence to a large extent, making concealment of
errors caused by data loss a serious issue. Previous work in spa-
tial error concealment exploiting MRF models used a single pixel
wide region around the erroneous area to achieve a reconstruc-
tion based on an optimality measure. This practically restricts the
amount of available information that is used in a concealment pro-
cedure to a small region around the missing area. Incorporating
more pixels usually means a higher order model and this is expen-
sive as the complexity grows exponentially with the order of the
MRF model. Using previously proposed approaches, the damaged
area is reconstructed fairly well in very low frequency portions of
the image. However, the reconstruction process yields blurry re-
sults with a significant loss of details in high frequency, or edge
portions of the image. In our proposed approach, a MRF is used
as the image a priori model. More available information is in-
corporated in the reconstruction procedure not by increasing the
order of the model but instead by adaptively adjusting the model
parameters. Adaptation is done based on the image characteris-
tics determined in a large region around the damaged area. Thus,
the reconstruction procedure can make use of information embed-
ded in not only immediate neighborhood pixels but also in a wider
neighborhood without a dramatic increase in computational com-
plexity. The proposed method outperforms the previous methods
in the reconstruction of missing edges.

1. INTRODUCTION

The fast growth of digital transmission services has created a great
interest in digital transmission of image and video signals. Since
digital image and video signals require very high bit rates, the com-
pression of such signals becomes necessary. Three standards have
emerged to facilitate the growth of new image communication ap-
plications. These are: 1) the Joint Photographic Experts Group
(JPEG) standard for still image compression [1, 2], 2) the Inter-
national Telecommunication Union (ITU) recommendation H.261
for video telephony and conferencing [1] and its subsequent revi-
sions, e.g., H.263 and H.263+, and 3) the Moving Pictures Expert
Group (MPEG) for full motion video compression and coding in
digital storage media and digital communication applications [1].
The common features of these compression standards is that they
are all block based and use the discrete cosine transform (DCT).

Communication channels are not error free and consequently,
the encodedbit streams are vulnerable to transmission impairments,
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which may cause loss of blocks of data or total loss of synchro-
nization. The impact of bit stream corruption or loss in the picture
quality while usually substantial, still depends on the actual trans-
mission method and the compression algorithm.

Several methods to combat the channel errors have been pro-
posed. Automatic Retransmission Request (ARQ) or interleav-
ing techniques are often ineffective, because ARQ may aggravate
channel congestion and cause the system to drop more data, and
interleaving may require considerable delay. Another method is to
employ forward error control coding techniques. There are sev-
eral problems associated with these techniques. First, they usu-
ally require too many additional precious bits for error detection
and/or correction. Second, they may introduce long delays that are
not acceptable in some applications. An alternative method is to
perform error concealment, which intends to conceal the bit error
effects at the receiver by exploiting redundancies in the video sig-
nal and limitations of the human visual system, without requiring
additional information at the coder [3, 4]. Error concealment of
images and video aims at removing the visually annoying artifacts
that degrade significantly the overall picture quality.

Error concealment techniques mainly make use of temporal
and/or spatial correlation in the video signal and reconstruct the
missing region of video frame from adjacent regions or frames.
A simple and yet quite effective temporal reconstruction method
is to replace the corrupted/missing region with its corresponding
part in the previous frame. Although this method generally works
well in still parts of the picture, such as the background, it can-
not produce satisfactory results when the video sequence exhibits
fast moving objects, lighting changes, or sudden scene changes[5].
Spatial reconstruction techniques include averaging or linear inter-
polation [6], constrained linear interpolation [6], multi-directional
edge-based interpolation [7, 8, 4], and Bayesian interpolation [9].

Intuitively, the most effective reconstruction method is the one
that uses the image a priori model together with the available data
for estimating the missing data. Recently, Markov Random Fields
(MRF) have been extensively used to model images. The attractive
features of an MRF model are the computational tractability and
the ability of the model to capturenon-Gaussian aspects of the
image such as edges.

Image distribution models (e.g., MRF) have been used for er-
ror concealment. In fact, the Bayesian approach provides a frame
work for incorporating the a priori information through the choice
of the distribution of the image. Maximum a priori (MAP) estima-
tion, a paradigm used very often in image processing, yields the
most likely image given the observed data. A critical component
in MAP estimation is the prior distribution of the image model.

Previous work in spatial error concealment exploiting MRF



models used a single pixel wide region around the erroneous area
to achieve a reconstruction based on an optimality measure. In
other words, the amount of available information that is used in
estimating damaged data, has been restricted. Incorporating more
pixels usually means a higher order MRF model and this is expen-
sive as the complexity grows exponentially with the order of the
MRF model. Using previously proposed approaches, the damaged
area is reconstructed fairly well in very low frequency portions
of the image. However, the reconstruction process yields blurry
blocks with a significant loss of details in high frequency or edge
portions of the image.

In our approach, a MRF is used as the image a priori model.
We incorporate more available information in our suggested re-
construction method not by increasing the order of the model but
instead by adaptively adjusting the model parameters. Adaptation
is done based on the image characteristics determined using a large
region around the damaged area. Thus, the reconstruction proce-
dure can make use of information embedded in not only immedi-
ate neighborhood pixels but also in a wider neighborhood without
a dramatic increase in computational complexity. The proposed
method achieves better performance in reconstructing the edges.
Although the method is general and can be applied to any of block-
based compression method (for images or image sequences) we
use H.263 video coding method.

It is assumed throughout that the decoder knows the locations
of the missing macroblocks (MB). This can be achieved, for exam-
ple, by transmitting the MBs of the image sequence in a predeter-
mined order and assigning sequence numbers to packets in packet
based transmission.

The structure of this paper is as follows. In Section 2, MRF
and MAP estimation of missing data is discussed. Section 3 details
the proposed method. Sections 4 and 5 present the experimental
results and the conclusions, respectively.

2. MRF AND MAP ESTIMATION OF THE MISSING
DATA

Over the last few years, MRFs have been extensively used for im-
age modeling [10]. The attractive features of an MRF model are
computational tractability and the ability of the model to capture
non-Gaussian aspects of the image such as edges. To enable the
model to accurately characterize the image data, usually adjustable
parameters are considered in the model. A MRF with a Gibbs dis-
tribution is

Pr(x) =
1

Z
expf�

X
c2C

Vc(x)g; (1)

where Z is a normalizing constant,Vc(:) is called potential func-
tion and is a function of a local group of pixels c called clique, and
C denotes the set of all cliques throughout the image. Depend-
ing on the choice of the potential function and the clique, different
models are obtained. Each potential function characterizes the re-
lationship between a group of pixels by assigning a larger cost to
configurations of pixels which are less likely to occur.

Having selected the image model, estimation of image missing
data using the MAP estimation technique eventuates into a func-
tional minimization problem [9, 11]. The choice of the potential
function is crucial to the quality of the estimated image. The poten-
tial function should be convex to have an easily-obtainable global

minimum. Commonly, the potential functions are selected to be in
the form of X

c2C

Vc(x) =
X
c2C

�(dt

cx); (2)

wheredc is a coefficient vector for a clique c. These coefficients
are selected based on the a priori assumptions about the image.
Usually they are selected so thatdc provides an approximation of
first or second derivative of the image at each pixel. We will con-
sider only potential functions which act on pairs of pixels. For the
special case of�(x) = x2, the model is called a Gauss-Markov
random field (GMRF). This image model may result in blurred
estimate of the image particularly along edges. To reduce the
smoothing effect of the GMRF other forms of cost functions have
been introduced. One of the proposed cost functions is the Huber
function

�(x) =

�
x2 : jxj < 


2 + 2
(jxj � 
) : jxj > 


(3)

where
 is the threshold. The image model exploiting this cost
function is called a Huber Markov Random Field (HMRF).

In this work, we will consider an eight pixel clique around
each pixel as shown in Figure 1. There are eight directions corre-
sponding to the line segment connecting the pixel and one of the
pixels in its clique. The potential function can be written as

X
c2C

Vc(x) =
X
i

X
j

8X
m=1

�(wm
i;jDm(xi;j)); (4)

whereDm(xi;j) is the difference between the value of the pixel
in position (i,j) and the pixels in its clique corresponding to m-th
direction andwm

i;j is the weight assigned to this difference. The
reason for selecting an eight pixel clique in the way shown will
become clear in the following section.

3. PROPOSED METHOD

Basically, the performance of the MAP estimator based on a HMRF
can be described in this way: when the values of the neighboring
pixels are close to each other, the missing pixel is set to the aver-
age of those pixels. When the pixel values are not similar, a voting
procedure is performed and the estimated value is selected that is
close to the value of the majority of the neighboring pixels (a me-
dian like performance). This behavior prevents the appearance of
pixel values different from their neighbors, which in turn limits the
performance of the estimator in reconstructing edges. A very sim-
ple situation is depicted in Figure 2. The value of the center pixel,
xi;j is missing. Assuming the pixel values are p and q as shown
in the figure andp� q, there will be a vertical edge in the image.
Using the GMRF model, the value of the missing pixel is

x̂i;j =
X

(i;j)2c[c0

xi;j=(nc + nc0 ); (5)

where c is the clique andc0 is its complement shown in Figure
1, nc andnc0 are the number of pixels in the clique and its com-
plement respectively (each 8 for the shown clique) [11]. For the
shown values, the estimation will be

x̂i;j =
2p+ 14q

16
; (6)



Exploiting the HMRF model we will get

x̂i;j = (
X

(i;j)2I

xi;j � 2
)=nI ; (7)

whereI = c [ c0 � f(i� 1; j); (i+ 1; j)g andnI is the number
of pixels inI. For the specific example, we will have

x̂i;j =
14q � 2


14
(8)

Obviously, the estimated value is close to the majority of the
neighboring pixels. Thus, none of the above mentioned models
is able to detect the presence of the vertical edge and reconstruct
the missing pixel value based on that edge. Usually, relying only
on the local image characteristics (e.g. using a window) in the re-
construction procedure causes some of the image attributes to be
ignored or misinterpreted.

In this work, instead of using the HMRF which seems to be
ineffective, we exploit the GMRF model with an eight pixel neigh-
borhood as the clique. The weight corresponding to the differences
between a pixel and each of the pixels in its clique is selected adap-
tively, based on the likelihood of an edge in the direction of that
pair of pixels. The rationale behind this selection is to weigh more
the difference between the pixels in that direction. This will cause
the values of the pixels in that direction to get closer to each other.
The likelihood of edges in each of the eight directions is calculated
using a large area around the missing MB. In this way, the avail-
able information is exploited on a larger area without increasing
the order of GMRF model which consequently increases compu-
tational complexity. As the weights are selected according to the
edges in the corresponding direction, when several edge directions
exist, the reconstruction procedure combines them.

The first step in the proposed method is to determine those
edges in the MBs surrounding the missing MBs that pass through
the missing MBs. Edges in the MBs to the left, right, up and down
of the missing MB are determined using the gradient measure in
the spatial domain [7, 8, 4]. The edge for pixel x(i,j) in the sur-
rounding MBs is computed by

gx = xi+1;j � xi�1;j�1 + xi+1;j (9)

�xi�1;j�1 + xi+1;j � xi�1;j�1;

gy = xi+1;j � xi�1;j�1 + xi+1;j (10)

�xi�1;j�1 + xi+1;j � xi�1;j�1

which is the Sobel mask. The magnitude and angular direction of
the gradient at (i,j) are:

G =
p
g2x + g2y (11)

� = arctan(
gy
gx

) (12)

The angular value of the gradient is rounded to one of the eight di-
rections equally spaced in the zero to180�. There is a counter cor-
responding to each of the eight directions. If a line drawn through
the pixel (i,j) passes thought the missing block, the corresponding
counter is incremented by the amount of the gradient. The weights
in the potential function corresponding to each pair of pixels is se-
lected proportional to the counter in the direction corresponding to
them. That is

wm
i;j = �cm (13)

wherecm is the counter in the m-th direction and� is a constant.
It can be shown along the proof given in [11] that under these
conditions

x̂i;j =
X

(i;j)2c[c0

wm
i;jxi;j=(

X
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i;j); (14)

Therefore an iterative procedure can be exploited to estimate the
missing pixel values. Finally, the whole reconstruction procedure
can be described as follows:

1. Determine the edges in the neighbor MBs and assign them
to eight equally spaced directions. Count the number of edges in
each direction,

2. Assign a value proportional to each edge counter to the
corresponding weight in the GMRF model,

3. Use (14) to find an estimation of each missing pixel based
on its adjacent pixels and the weight obtained in the previous steps,
and

4. Iteratively estimate the missing pixels using (14) until the
procedure converges.

In the case where adjacent MBs are lost, the reconstruction
algorithm is applied recursively starting with the MBs with maxi-
mum number of correctly decoded neighbors.

4. EXPERIMENTAL RESULTS

The proposed error concealment method has been tested using a
H.263 video coder. Figure 3 shows a frame of the image sequence
FOREMAN coded and decoded using H.263. Figure 4 shows the
same frame missing a number of MBs. Figure 5 shows the image
reconstructed using the non-adaptive GMRF model. Obviously,
this method performs poorly in reconstruction of edges. Figure 6
shows the image of Figure 4 after applying the proposed error con-
cealment algorithm. Clearly, the proposed method is performing
better in retrieving the edges. The PSNR for reconstructed frames
using non-adaptive GMRF and adaptive GMRF are 28.1 and 31.8
respectively. The results shown here, as well as results obtained
for other test images, demonstrate that the proposed algorithm per-
form well.

5. CONCLUSIONS

In this paper we presented a new approach for reconstruction of
missing coded data. In the suggested method, a MRF is used as the
image a priori model and the model parameters are adaptively and
locally adjusted based on the image characteristics determined us-
ing a large region around the damaged area. In this way, the recon-
struction procedure exploits the information embedded in a large
neighborhood around the area with missing data without a substan-
tial increase in computational complexity. The missing data is es-
timated using a MAP estimator and the adaptive MRF model. The
proposed method outperforms previous methods in reconstructing
the edges and the quality of the reconstructed images is also rela-
tively good.
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Figure 1: A pixel, its clique c and the eight directions.c0 is the
dark area.
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Figure 2: A missing pixel in a vertical edge.
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Figure 3: Original frame of the image sequence Foreman.

Figure 4: Frame missing MBs.

Figure 5: Frame after reconstruction using a GMRF model.

Figure 6: Frame after reconstruction using our adaptive GMRF
model.


