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ABSTRACT
This paper introduces a new form of observation distributions

for hidden Markov models (HMMs), combining subvector
quantization and mixtures of discrete distributions. We present
efficient training and decoding algorithms for the discrete-
mixture HMMs (DMHMMs). Our experimental results in the air-
travel information domain show that the high-level of recognition
accuracy of continuous mixture-density HMMs (CDHMMs) can
be maintained at significantly faster decoding speeds. Moreover,
we show that when the same number of mixture components is
used in DMHMMs and CDHMMs, the new models exhibit
superior recognition performance.

1. INTRODUCTION
In [1],[2] we developed a novel encoding scheme for the

transmission of the mel-warped cepstral coefficients (MFCCs) in
a client-server architecture for speech-enabled applications over
the World Wide Web (WWW) and wireless channels. MFCCs
are the parameters used by most state-of-the-art speech
recognition systems today. By using subvector quantization and a
bit-allocation algorithm that was driven by speech recognition
performance, we were able to encode the 13 MFCCs using as
little as 20 bits in noise-free environments, while maintaining the
recognition performance of a high-quality front end. This is a
rather surprising result, given that all hidden Markov Model
(HMM)-based state-of-the-art recognition systems today
represent the MFCCs using floating-point arithmetic and model
their distributions with Gaussian mixtures.

The possibility of representing the MFCCs with a small
number of bits, instead of the 416 (= 3 coefficients x 32 bits per
coefficient) that are traditionally used in continuous-density
Gaussian-mixture HMMs (CDHMMs), in addition to being
advantageous for transmission and storage, has serious
implications in acoustic modeling. Using Gaussian mixtures to
model a set of coefficients that can be represented with 20 bits is
clearly overkill. In this paper, we demonstrate that the high level
of recognition performance of CDHMMs can be maintained with
a far more efficient type of HMM, the discrete-mixture HMM
(DMHMMs) with subvector quantization of the coefficient
parameters.

Before CDHMMs became the model of choice in most state-of-
the-art recognizers used in speech laboratories and speech-
application companies worldwide, the first generation of HMM-
based speech recognition systems was using discrete-distribution
HMMs. The advantage of discrete HMMs over CDHMMs is the
faster computation of the output HMM probabilities. Until now,
however, it was generally believed that the recognition error rates
that can be achieved with discrete distribution HMMs are a factor
of one-and-a-half to two times higher than their continuous-
density counterparts. There are many reasons why previous

attempts with discrete HMMs did not achieve the level of
performance of CDHMMs:
• In previous work, discrete HMMs did not quantize the

acoustic space in sufficient detail. The 13 MFCCs were
typically quantized using 8 bits, or 256 centroids. In contrast,
in one of our implementations we quantize the 13 MFCCs with
five subvectors and product-code vector quantization (VQ),
assigning 5, 5, 4, 4 and 2 bits, respectively, to each subvector.
This corresponds to a total of 32*32*16*16*4 = 1,048,576
centroids for the full vector.

• In our work we use a novel quantization scheme that is
driven by speech-recognition performance, that optimally
assigns bits to the subvectors that are more important for
recognition.

• Subvector quantization by itself is not sufficient – it must be
combined with mixtures of discrete distributions. An HMM
system that uses subvector quantization and models the full
vector with a product of discrete distributions will not capture
the correlation between the different subvectors. In contrast, an
HMM system that uses subvector quantization and models the
full vector with a mixture of discrete distributions, each being
the product of conditionally independent discrete subvector
distributions, does model the correlation between the different
subvectors.
In the remainder of this paper we shall show how a discrete

HMM can be constructed that will achieve the level of
performance of CDHMMs at much faster decoding speeds.

Related to the model that we propose in this paper is the work
by Takahashi et al.[3], where scalar quantization was combined
with mixtures of discrete distributions. However, as we shall see
in Section 4, discretization of a CDHMM using scalar
quantization results to a system that is actually slower than the
original CDHMM. Bocchieri [4] has partitioned the observation
vector into subvectors and used it with a continuous Gaussian
HMM, clustering separately the Gaussians of the different
subvectors.

2. SUBVECTOR QUANTIZATION
A client-server architecture for speech-enabled applications

was presented in [1], [2]. The MFCCs were encoded at the client,
the codebook indices were transmittted, then mapped at their
corresponding centroids at the server side, and recognition was
performed at the server, using CDHMMs.

In [1] we encoded the MFCCs using nonuniform scalar
quantization of the MFCCs, and in [2] we presented an improved
subspace quantization scheme of the cepstral coefficients. The
MFCCs are partitioned into subvectors, and then the subvectors
are encoded by using separate codebooks. The total number of
codewords that represent the acoustic space is the product of the



number of codewords used for the representation of each
subvector.

The feature vector can be partitioned into subvectors using
automatic methods based on the estimated pairwise correlation
coefficients of its elements. We found, however, that a simple
approach, where the vector of MFCCs is partitioned into
subvectors that contain consecutive coefficients, performs well.

Having formed the subvectors of the product code, one must
allocate the bits among the respective codebooks. In [2] we
introduced a bit-allocation algorithm that uses the word-error rate
(WER) as a metric to optimally assign bits to the different
subvectors. Specifically, we start with an initial bit allocation and
then increase the bit rate by adding bits to the subvectors that
yield the maximal incremental increase in recognition
performance. The algorithm terminates once the maximum bit
rate or the desired recognition performance has been reached.

3. DISCRETE-MIXTURE HMMS

3.1 Definition of Output Distribution

The encoding scheme that we described in Section 2 first
partitions the vector of MFCCs into L subvectors,

[ ]Lttt xxx ,,1 L= , and then quantizes each subvector using a

separate VQ codebook, [ ].)(,),()( 1 Lttt xvqxvqxvq L=
In the client-server architecture presented in [2], we found that

by transmitting the codebook indices, mapping them at their
corresponding centroids at the server, and using a CDHMM to
perform recognition, the performance of the unquantized MFCCs
was maintained.

Using the computationally expensive Gaussian distributions to
model subvectors of a few MFCCs that can be encoded with two
to three bits, however, is very inefficient. In this paper we
propose to use a new form of discrete-mixture output
distribution, )( tj xb , which has the following form:
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where jkc is the mixture coefficient for the k-th mixture in state

j, and ))((P itjki xvq  is the probability of observing the discrete

symbol )( itxvq for the i-th subvector. The mixture coefficients

are nonnegative, and sum to one for each HMM state j.
The output distribution introduced above assumes that the

indices of different subvectors are conditionally independent
given the state and mixture index. Dependencies between the
different subvectors for a given state are modeled through the
mixture components. When compared to the conventional
CDHMMs, the discrete mixture HMMs replace a multivariate
Gaussian density with the product of L discrete distributions, one
for each subvector, as is shown in Figure 1.

CDHMMs   ( )EM W F
MN W MN MN

N

0

[ [= 





=
∑ N � �µ Σ

�

DMHMMs  ( ) ( )( )∑ ∏
= =

=
M

k

L

i
it

xvqjkiPjkc
tjb

1 1

x

Figure 1: Comparison between Continuous Gaussian-
mixture HMMs and Discrete-mixture HMMs.

3.2 Training of DMHMMs

Training of DMHMMs can be done using the Baum-Welch
algorithm. The initial models can be obtained by discretizing a
corresponding set of CDHMMs.

Initialization
Using the correspondence shown in Figure 1, the discrete

distributions of a DMHMM can be initialized from the
corresponding terms of a CDHMM. If the i-th subvector is
quantized using B bits, then the probability of observing the l-th
centroid ))((P lxvq itjki = can be initialized to the value:
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where the summation in the denominator is over all 2B centroids,
the l-th centroid of the i-th subvector is the d-dimensional vector

[ ]ildil vv ,,1 L , and jkdjk µµ ,,1 L are the corresponding

elements of the mean for the k-th Gaussian distribution of state j.

Reestimation Equations
The reestimation formulae can be derived directly by

maximizing Baum’s auxiliary function. It can be shown that the
new estimate for the probability of observing the l-th centroid for
the i-th subvector of the k-th mixture in state j is given by
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where ),( kjtγ is the posterior probability of being in state j at

time t with the k-th mixture component accounting for  the
observation. This probability can be computed using the forward-
backward algorithm and the previous estimates of the output
probabilities, using
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3.3 Smoothing DMHMMs

For large-vocabulary systems with a large number of context-
dependent states, many of the discrete-mixture components will
be estimated from a small number of samples. It is, therefore,
important to smooth the discrete mixtures. Although more
elaborate schemes, like deleted interpolation, can be used, we
experimented with two simple schemes of linear interpolation.



In the first method, each mixture distribution for a particular
state-subvector combination is linearly interpolated with the
average distribution for that state and subvector with a weight
that is empirically determined. The average distribution is
computed by linearly combining the M mixture distributions for
that state using their mixture weights.

The second method smooths each distribution by linearly
combining its newly estimated values with the values of the same
distribution from the previous iteration.

3.4 Pruning of DMHMM probabilities

To speed up the Gaussian computation in CDHMM systems
with diagonal covariances, an incremental pruning method is
often used. In this technique, the log-likelihood of a new
Gaussian is incrementally computed by summing the
contribution of the different MFCCs, and the accumulated value
is periodically compared (for example, every five dimensions) to
the total log-likelihood of the best Gaussian computed up to this
point. If its value is less than the best likelihood by more than a
pre-specified margin, then the Gaussian is pruned and the
contribution from the remaining MFCCs is not calculated.

Since table look-up is an operation similar to a one-
dimensional Gaussian computation, a similar pruning algorithm
can be applied to the discrete DMHMM system. However,
experimenting with the previous algorithm, we observed that it is
not satisfactory: the mixtures were pruned typically during the
last check, since we compared the partial values of the likelihood
with the total value of the best mixture component. Hence, we
modified the previous pruning algorithm so that the accumulated
partial log-likelihood of a new mixture distribution is compared
to the best partial log-likelihood computed up to this point for
the same subvectors. This pruning algorithm can be made even

more efficient, by ordering the subvectors so that the most
discriminating subvectors are computed first, by doing the
comparisons early on and by experimentally finding the optimum
number of comparisons, since increasing the number of checks
above a certain point will introduce delays.

4. EXPERIMENTAL RESULTS
We used SRI’s DECIPHER continuous speech-recognition

system, configured with a six-feature front end that outputs 12
MFCCs, cepstral energy, and their first- and second-order
differences. We performed experiments in the ATIS domain [5],
and we used a bigram language model throughout our
experiments. The training data consisted of 20,000 sentences,
and the test set consisted of 400 sentences from 34 male and
female speakers. The CDHMM system was a genonic HMM [6],
with state-clustered tied mixtures.

For the DMHMM systems, the feature vector is split into a
specified number of subvectors, which are then processed by the
quantizer, and a vector of discrete values with the same length as
the number of subvectors is the input to the discrete recognizer.
We experimented with 9, 15, 24 and 39 subvectors. In the latter
case, each subvector consists of a single feature element. We did
not experiment with fewer than 9 subvectors because, in the
process, size increased significantly.

In our experiments we were mainly interested in reducing the
computation time, while maintaining the WER of the baseline
CDHMM system. All decoding times reported in this paper were
measured on the same machine with an Intel 266-MHz Pentium-
II processor and 256-MB main memory. A Viterbi beam search
was used, and the number of active hypotheses was maintained at
the same level while decoding times were measured.
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Figure 2: Various operating points indicating the word-error rate vs. speed trade-off for the baseline continuous CDHMM and
discrete-mixture HMMs with 9, 15, 24 and 39 subvectors. The discrete-mixture HMMs clearly outperform the baseline CDHMM,
achieving similar recognition error rates at a fraction of the decoding time required by the CDHMM.



4.1 Comparison of Decoding Times

We first performed a series of experiments comparing the
decoding times of the baseline CDHMM system and the discrete
DMHMMs that were obtained by discretizing the baseline system
for the various configurations mentioned above. The results are
summarized in Table 1. Differences in WER are statistically
insignificant. Without pruning, we can see that the decoding time
decreases for DMHMMs as the number of subvectors decreases.
Except for the case of scalar quantization (39 subvectors), the
DMHMMs are always faster than the CDHMM system, speeding
up the computation by as much as 38%. The 39-subvector result
is consistent with the findings of [3], where discrete HMMs were
combined with scalar quantization and it was found that the
decoding was slower than the corresponding continuous system.
The use of the improved incremental pruning algorithm with the
DMHMMs increases the speed-up over the baseline system even
more, with a total computation saving of 59.5% for the case of 9
subvectors.

No Pruning With Pruning

System WER
(%)

TIME
(xRT)

WER
(%)

TIME
(xRT)

Speed-up over
CDHMM (%)

CDHMM 6.60 5.69 6.60 5.25 -

DM-39 6.25 6.33 6.32 2.61 50.3

DM-24 6.60 5.23 6.38 2.36 55.0

DM-15 6.58 4.14 6.63 2.21 58.0

DM-9 6.25 3.53 6.53 2.13 59.5

Table 1: Word-error rates and decoding times with and
without incremental pruning for continuous- and discrete-
mixture HMMs.

The superior performance of the new DMHMM systems over
the conventional CDHMMs in terms of decoding efficiency is
clearly demonstrated in Figure 2, where we show the systems of
Table 1 operating at different points in terms of WER/decoding
time trade-offs. The various operating points were obtained by
changing the beam-width of the Viterbi beam search. The closer
the curves to the lower left point, the better, since we achieve low
error rates at faster speeds. We see that the DMHMM systems are
two to three times faster than the CDHMM for a fixed WER. In
addition, for a fixed decoding time, the DMHMMs perform far
better for areas in the graph where pruning errors occur. For
instance, the DMHMM systems achieve real-time performance at
a WER of about 7.5%, whereas the CDHMM system suffers from
too many pruning errors at that operating point.

4.2 Number of Mixture Components

The DMHMM system models the output probability
distribution with a mixture of nonparametric discrete
distributions. In contrast, the CDHMM system has the constraint
that its mixture components have a specific form, that of a
Gaussian distribution. It is, therefore, reasonable to expect the
same level of performance by DMHMMs using a smaller number
of mixtures than the baseline CDHMM system. This implies that
additional speed-ups are possible by decreasing the number of
mixture components. From a different viewpoint, the recognition
performance of a DMHMM system should exceed that of a

CDHMM when the same number of mixture components is used.
These hypotheses are verified in Table 2. There, we show the
WERs, the decoding time, and the required memory (process size
in Mbytes) for CDHMMs and the 15-subvector DMHMM
system with 8, 16 and 32 mixture components. The DMHMM
systems in these experiments were retrained, and the second
smoothing algorithm of Section 3.3 was used. We see that the
WER of the DMHMM system degrades far more gracefully than
that of the CDHMM system, as the number of mixture
components is decreased. For 16 and 8 mixture components the
DMHMM system significantly outperforms the baseline
CDHMM systems in terms of WER.

System # of
mixtures

WER
(%)

TIME
(xRT)

Memory
(MB)

CDHMM 32 6.60 5.25 27.0
CDHMM 16 8.10 2.75 18.0
CDHMM 8 9.04 2.47 15.0
DM-15 32 6.90 2.83 57.7
DM-15 16 7.32 1.83 34.8
DM-15 8 7.57 1.48 23.0

Table 2: Word-error rates, decoding times, and process size
for continuous- and discrete-mixture HMMs with different
numbers of mixture components.

In conclusion, we have shown that DMHMMs with subvector
quantization are far more efficient in decoding time than
similarly configured conventional CDHMMs. Since DMHMMs
use nonparametric distributions, they need fewer mixtures for the
same accuracy level than CDHMMs, and this reduces further the
recognition time.
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